GA-A26668

OPTIMIZATION OF THE SAFETY FACTOR PROFILE FOR HIGH NONINDUCTIVE CURRENT FRACTION DISCHARGES IN DIII-D

by

J.R. FERRON, C.T. HOLCOMB, T.C. LUCE, P.A. POLITZER, F. TURCO, A.E. WHITE, J.C. DEBOO, E.J. DOYLE, A.W. HYATT, R.J. La HAYE, T.W. PETRIE, C.C. PETTY, T.L. RHODES, M.A. Van ZEELAND, and L. ZENG

MAY 2010

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

OPTIMIZATION OF THE SAFETY FACTOR PROFILE FOR HIGH NONINDUCTIVE CURRENT FRACTION DISCHARGES IN DIII-D

by

J.R. FERRON, C.T. HOLCOMB¹, T.C. LUCE, P.A. POLITZER, F. TURCO², A.E. WHITE², J.C. DEBOO, E.J. DOYLE³, A.W. HYATT, R.J. La HAYE, T.W. PETRIE, C.C. PETTY, T.L. RHODES³, M.A. Van ZEELAND, and L. ZENG³

This is a preprint of a paper to be presented at the 23rd IAEA Fusion Energy Conference, October 11–16, 2010 in Daejon, Republic of Korea and to be published in Proceedings.

¹Lawrence Livermore National Laboratory, Livermore, California
²Oak Ridge Institute of Science and Education, Oak Ridge, Tennessee
³University of California-Los Angeles, Los Angeles, California

Work supported in part by the U.S. Department of Energy under DE-FC02-04ER54698, DE-AC52-07NA27348, DE-AC05-06OR23100, and DE-FG03-08ER54984

GENERAL ATOMICS ATOMICS PROJECT 30200 MAY 2010

In a tokamak discharge with 100% noninductively driven current ($f_{NI} = 1$) and a large fraction of self-generated bootstrap current (f_{BS}) , the safety factor (q) profile plays a key role as a result of the close coupling to both the transport coefficients and the sources of noninductive current density. In order to assess the optimum q profile for $f_{\rm NI} = 1$ discharges in DIII-D, the self-consistent response of the plasma profiles to changes in the q profile was studied in high $f_{\rm NI}$, high $\beta_{\rm N}$ discharges through a scan of $q_{\rm min}$ and q_{95} at two values of $\beta_{\rm N}$. As expected, both $f_{\rm BS}$ and $f_{\rm NI}$ increased with q_{95} . The temperature and density profiles were found to broaden as either q_{\min} or β_N is increased (Fig. 1). A consequence is that f_{BS} does not continue to increase at the highest values of q_{\min} (Fig. 2). The density and temperature profile shape changes as β_N is increased modify the bootstrap current density (J_{BS}) profile from peaked to relatively flat in the region between the axis and the H-mode pedestal. A peaked noninductive current density $J_{\rm NI}$ profile is required, however, to match the total current density (J)(Fig. 3). Therefore, significant externally driven current

Fig. 1. Radial profiles of electron temperature at different values of q_{95} : 4.5 (red), 6.8 (green) and q_{\min} : 1 (solid), 1.5 (dashed), 2 (dot-dash). (a) $\beta_{\rm N} = 2.8$, (b) maximum $\beta_{\rm N}$.

density in the region inside the H-mode pedestal is required in addition to J_{BS} to match the profiles of J_{NI} and the desired total J. These profiles were most similar at $q_{\min} \approx 1.35 - 1.65$, $q_{95} \approx 6.8$, where f_{BS} is also maximum, establishing this q profile as the optimum choice for $f_{\text{NI}} = 1$ operation in DIII-D with the current set of external current drive sources. This experiment will also aid in establishing the physics basis for $f_{\text{NI}} = 1$ discharges for the ITER steady-state mission and for a DEMO reactor.

Fig. 2. Bootstrap current fraction at $\beta_N = 2.8$ as a function of q_{95} , 4.5 (red triangles), 5.6 (blue squares), 6.8 (green circles), and q_{\min} .

Because of the close coupling between the plasma profiles in a $f_{\rm NI} = 1$ discharge, the optimum q profile is difficult to model, thus motivating an experimental study. The bootstrap current density is proportional to q and the temperature and density gradients, but the q profile is strongly dependent on $J_{\rm BS}$ when $f_{\rm BS}$ is large. The gradients depend on the transport coefficients, which depend on q as well as the magnetic shear. The pressure limit also depends on the q profile and the gradients.

For this experiment, discharges were produced with nine different q profiles, $q_{\min}\approx 1$, 1.5, and 2 and $q_{95}\approx 4.5$, 5.6 and 6.8. The plasma current was changed at constant toroidal field in order to vary q_{95} . The density and temperature profiles were measured both at $\beta_N=2.8$ and at the maximum achievable β_N , 3.1-3.8 depending on the q profile, which is within 10%-20% of the calculated stability limit. The noninductive current density profiles were computed from models, obtaining f_{NI} between 0.45 and 0.9.

In the lower $\beta_N=2.8$ set of discharges, there is significant broadening of the temperature profiles as q_{\min} increases [e.g. T_e profiles in Fig. 1(a)]. In the maximum β_N discharges, though, the temperature profiles are all broad and are relatively independent of q_{\min} [Fig. 1(b)]. In all cases, T_e and T_i increase across the entire profile as q_{95} decreases, as would be expected at higher

 $I_{\rm p}$. The pumping of the particle exhaust in the divertor region results in relatively low pedestal density and peaked density profiles. The density gradient peaks near $\rho=0.2$ in the low $\beta_{\rm N}$ case, but the profiles broaden with the increase in $\beta_{\rm N}$.

The J_{BS} profile at $\beta_N=2.8$ is peaked in the region inside the H-mode pedestal, primarily as a result of the peaked density gradient. At the maximum β_N , though, the broader density and temperature profiles result in J_{BS} that is reduced near the axis and increased at midradius, producing the relatively flat J_{BS} profile inside the H-mode pedes-

Fig. 3. Radial profiles of the current density components. (a) $q_{\min} = 1.35$, $q_{95} = 6.8$, $\beta_N = 3.6$, (b) $q_{\min} = 1.5$, $q_{95} = 4.5$, $\beta_N = 3.45$. The total current density is from an experimental equilibrium reconstruction, the noninductive current density components are calculated from models [bootstrap current (solid), neutral beam driven (long-dash), electron cyclotron driven (dot-dot-dot), total noninductive (dot-dash)].

tal. There is no systematic dependence on q of the maximum J_{BS} in the H-mode pedestal region as larger temperature gradients at lower q_{95} are compensated by the q scaling of J_{BS} . However, at the highest β_N there is a systematic increase with q_{95} in the width of the J_{BS} peak in the pedestal region.

The commonly used model $f_{BS} \propto q_{95} \beta_N$ only roughly agrees with these experimental results because it does not include changes in the *n* and *T* profiles or a dependence on q_{\min} . In this experiment, as expected f_{BS}/β_N increases with q_{95} and increases with q_{\min} in the range 1-1.5, but it decreases as q_{\min} is increased from ≈ 1.5 to 2 and, for a given *q* profile, as β_N is increased.

This study showed that the optimum q profile for $f_{\rm NI}=1$ operation with the external current drive sources presently available at DIII-D is $q_{\rm min}\approx 1.35-1.65$, $q_{95}\approx 6.8$ where the shapes of the $J_{\rm NI}$ and total J profiles are most similar [Fig. 3(a)]. In the discharges studied for this experiment, $f_{\rm NI}\approx 0.85$ in this case. The required external current drive near the axis is provided by the neutral beams and additional current drive to match the $J_{\rm NI}$ and J profiles can be provided by off-axis ECCD. The fraction of neutral beam driven current can be comparable to $f_{\rm BS}$, particularly in discharges at the highest $q_{\rm min}$ which have the lowest ne and highest $T_{\rm e}$. At $q_{\rm min}=1$ the difficulty is a significant mismatch in the region $\rho<0.2$ where $J>>J_{\rm BS} + J_{\rm NBCD}$. At lower q_{95} [Fig. 3(b)] where $f_{\rm NI}<0.7$, substantial additional current drive can be provided by the off-axis beam injection planned for DIII-D in 2011. The off-axis beams can also enable the study of discharges with $q_{\rm min}>2$.

This work was supported by the US Department of Energy under DE-FC02-04ER54698, DE-AC52-07NA27348, DE-AC05-06OR23100, and DE-FG03-08ER54984.