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•  Abstract
 DIII-D experiments have investigated ITER startup scenarios, including an initial 
 phase where the plasma was limited on low field side (LFS) poloidal bumpers. 
 Both the original ITER "small-bore" (constant q95) startup and a "large-bore" 
 lower internal inductance ( i) startup have been simulated. In addition, i feed- 
 back control has been tested with the goal of producing discharges at the 
 ITER design value, i = 0.85. These discharges have been simulated using the 
 Corsica free boundary equilibrium code. High performance hybrid scenario 
 discharges (βN = 2.8, H98y2 = 1.4) and ITER H-mode baseline discharges (βN > 1.6, 
 H98y2 = 1–1.2) have been obtained experimentally in an ITER-similar shape after 
 the ITER-relevant startup
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•  Baseline startup ("small-bore", constant q95, limited on the low field side) 
•  Improved larger volume ("large-bore") low field side startup
•  High field side comparison (conventional tokamak startup)
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DIII-D Experiments and Modeling Have Evaluated 
ITER Startup Scenarios
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DIII-D Experiments and Modeling Have Evaluated 
ITER Startup ScenariosPlasma Startup in ITER Must Address Several Issues

•  Plasma rampup while limiting on 
 outer wall bumper limiters
  
•  Operation near n=0 vertical 
 stability limit (places constraints 
 on maximum i) D. A. Humphreys, IT/2-4Rb
  
•  Initiation at relatively low toroidal 
 electric field (~0.3 V/m)
  
•  qmin > 1 for advanced inductive 
 (AI) and advanced tokamak 
 scenarios

Challenge
Beryllium limiters close to 
engineering limits
  
Disruptions may occur 
 

  
Burnthrough and reproducibility 
problems 
  
Startup may be unfavorable for AI 

Implications for ITER



∇B towards X-pt (NBI)

The ITER "Small-Bore" Shape Has Been 
Evolved in DIII-D

SMALL-BORE ITER BASELINE SCENARIO

SCALING PARAMETERS
 
• I/aB is constant

• Time is scaled by the 
    resistive time constant,
    L/Rplasma (≈50:1)

• Shape scaled by 
    Router limiter (limited phase)
 ≈3.5:1
    R0 (diverted phase) ≈3.65:1
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The ITER "Small-Bore" Temporal Evolution Has 
Maintained q95 ≈ Constant During the Limited Phase

•  i(3) exceeds the 
 ITER design range 
 (0.7–1.0) sometimes 
 leading to a 
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i(3) ≡ 2V〈Bp〉/[(μoIp)2 R]2



∇B towards X-pt (NBI)

Small-Bore LFS ITER Startup Scenario Has Been Compared 
to More Conventional High Field Side (HFS) Startup
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HIGH FIELD SIDE COMPARISON •  Zeff is initially higher 
     for the small-bore 
     low field side (LFS) 
     startup, but 
     approaches HFS      
     levels later in time

•  Both CIII (dashed) 
     and OV (solid) 
     are initially higher 
     for the small bore 
     startup
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∇B towards X-pt (NBI)

A New, Larger Volume, Startup Scenario Was Developed, 
Diverting Earlier in Time to Minimize Limiter Heating

LARGE-BORE ITER STARTUP SCENARIO
•  The EC resonance 
    location is inside 
 the plasma volume 
 for effective power 
 deposition during 
 burnthrough in 
 both devices 
 –  Fundamental 
     O-mode in ITER
 –  2nd harmonic 
     X-mode in DIII-D  
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•  Temporal evolution of the large-bore ITER startup scenario



DIII-D Has Evaluated the ITER Baseline Startup Scenario 
and Helped Develop an Improved ITER Startup

• i(3) (large-bore, red) 
    is near or below ITER 
    design limit
 

• Higher qmin (delayed  
    sawteeth) with large 
    bore scenario
 

• Energy to LFS 
    limiters is reduced 
    with earlier divert 
    time
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Plasma Formation in DIII-D is on the HFS (R < 1.7 m), But 
Rapidly Limits on the Outer Wall (<1 s on ITER Time Scale)
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To Remain Within the ITER Design Range, i Can Be 
Controlled During Rampup With a Variety of Techniques

•  Feedback control of the current ramp
 –  Ohmic power supply is the actuator
 –  Plasma control system (PCS) calculates i(3) realtime (rtEFIT)
 –  PCS computes an error signal and varies dIp/dt by controlling 
     power supply voltage
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•  Neutral beam heating can affect internal inductance
 –  Heating modifies current profile
 –  DIII-D experiments to date have examined NB heating at constant 
     i in the large-bore scenario

•  Changes in density can modify internal inductance
 –  Density changes indirectly change temperature and current profile
 –  Small-bore DIII-D discharges have shown changes in internal 
     inductance when varying gas puffing and wall conditions



i Feedback, Using the i(3) Calculation in rtEFIT, 
Has Been Demonstrated in DIII-D

340-08/GLJ/jyGL Jackson/IAEA/Oct2008
DIII–D

Time (s)

       

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.4

0.5

0.6

0.7

0.8

0.9
1.0

 132502, 132411, 132498, 132500

H-mode

H-mode

Locked
mode

Ip (MA)

Ohmic current 
crossover

i(3), 

i-target



Both Flux Consumption and the Ejima Coefficient 
Are Reduced at Lower i (and Higher dIp/dt)
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Neutral Beam Heating Reduces the Ip Ramp Rate 
Required for Constant i
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Internal Inductance is Lower in the Limited Phase 
as Density is Reduced (and Te Increases)

• Density can 
    be changed 
    by gas puffing
    or wall con-
    ditioning
 

• Highest density 
    has earliest 
    sawteeth. 
    Delayed onset 
    with highest 
    wall fueling

• i is changed 
    only during 
    the limited 
    phase
 

• Small-bore 
    density scan 
    is shown
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Ohmic and ECH Large-Bore Discharges Have Been 
Compared at 4.5 V, 0.43 V/m (ITER Design = 0.3 V/m)

• Ip initiates faster with  
    2nd harmonic ECH 
 

• Current channel is 
    more outboard and 
    burnthrough more  
    prompt with ECH
   

• Prompt current initiation 
    and higher WMHD indi- 
    cate effective ECH 
    power deposition 
    (110 GHz, X2, radial 
    launch)
  

• Fraction of radiated 
    power is comparable 
    with Ohmic & EC assist 
    as discharge evolves
  

• EC-assisted startup as 
    low as 2.2 V (0.21 V/m) 
    achieved
    –  Ohmic LFS startup at 
         0.3 V/m still needs to 
         be developed
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Resistive Flux Consumption is Reduced With ECH 
Applied During the Limited Phase
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Breakdown and Burnthrough are More Prompt 
and More Reproducible With EC Assist (Large-Bore)
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Large-Bore Startup Has Been Successfully Coupled 
With ITER Burning Plasma Scenarios During Ip Flattop

•  ITER H-mode (baseline scenario 2) achieved
 –  I/aB = 1.4, βN ≥ 1.6, q95 = 3.0
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•  ITER hybrid mode (scenario 3) has been obtained (Doyle, EX/1-3)
 –  I/aB = 1.1, βN ≥ 2.6, q95 = 4.1

•  ELM modification in ITER baseline scenario H-mode with 
 applied Resonant Magnetic Perturbations (n=3 I-coils)

•  Rampdown of H-mode discharge demonstrated 
 –  Auxiliary heating during rampdown maintained H-mode 
     and reduced i



Large-Bore Startup Followed by ITER H-mode 
Burning Plasma Scenario Was Evaluated on DIII-D

•  ECH allowed robust 
      initiation
      –  Eφ as low as 0.21 V/m
      –  ITER design is ≤0.3 V/m
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•  Large-bore startup 
      –  Limited on LFS
      –  Earlier divert time 
     reduced heat flux to 
     LFS limiters
      –  Original small-bore 
     scenario had higher i

•  Ohmic rampup without 
      instabilities
      –  15 MA Q=10 baseline 
     is shown
      –  12 MA hybrid scenario 
     also achieved

•  Rampdown experiments 
      initiated 
      –  Discharge remained in 
     H-mode to reduce  i
      –  HFS limited when 
     I/aB = 0.24, q95 = 14



Hybrid Discharges Have Been Obtained Using 
the Large-Bore ITER Startup Scenario
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The CORSICA Code Has Been Used to Benchmark 
DIII-D Experimental Data
•  CORSICA calculates the current profile in two ways
 –  Transport. Evolved in time using ITER transport coefficients (initial conditions 
     determined from experimental data)
 –  Constrained P. Experimental pressure profiles derived from Te (using Thomson 
     scattering data) as discharge evolves
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•  Both small-bore and large-bore startup have been simulated 
 (T.C. Casper, PO3.14, 2008 APS-DPP Meeting, Nov. 17–21, Dallas, TX)
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Summary of Results

•  Three ITER startup scenarios have been evaluated
 –  Small-bore LFS ( i was higher than ITER design range)
 –  Large-bore LFS ( i was within acceptable range. Early diverted time 
     reduced limiter heating)
 –  HFS comparison (to compare impurity influx with LFS startup)
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•  Feedback (using Ip ramp rate) controlled i during startup
 –  i was also varied by neutral beam heating and density changes

•  EC assist improved breakdown and burnthrough
 –  EC startup was robust down to 0.21 V/m (below ITER design of 0.3 V/m)
 –  Ohmic startup ≥0.43 V/m obtained (further work required to reach 0.3 V/m)

•  Large-bore ITER startup was merged with ITER burning plasma scenarios 
 –  Baseline H-mode (scenario 2, Q=10, I/aB = 1.4) was evaluated, including 
     rampdown
 –  Hybrid mode achieved (Scenario 3, Q=5, fusion gain = 0.4)

•  Startup modeling (CORSICA code) is being benchmarked with DIII-D data



Implications of DIII-D Startup Experiments for ITER

•  Large-bore startup is compatible with the ITER scenarios investigated
 –  Early divert time reduces heat flux to LFS limiters
 –  i is reduced compared to the small-bore scenario (approximately 
     within ITER design limits)
 –  ITER H-mode and hybrid burning plasma scenarios achieved with 
     large-bore startup
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•  EC assist allows for robust burnthrough and reproducible breakdown 
 even down to 0.21 V/m
 –  Ohmic operating range is more limited

•  i feedback is a useful tool to control i
 –  Density feedback can also be used, but control may be more difficult
 –  i can also be controlled by auxiliary heating during Ip ramp, if available for ITER

•  Auxiliary heating during Ip rampup reduces resistive flux consumption
 –  Ejima coefficient is reduced, but overall flux reduction is modest

•  Preliminary modeling results (CORSICA code) indicate somewhat lower edge 
 current evolution than experimentally observed when using transport model 
  parameters from ITER studies




