Development in DIII-D of high beta discharges appropriate for steady-state tokamak operation with burning plasmas

Presented by J.R. Ferron

Presented at 22nd IAEA Fusion Energy Conference Geneva, Switzerland October 13-18, 2008

Introduction

Reliable production of high beta discharges with $f_{NI} = 1$ for duration τ_R has been the recent research focus

- Stationary discharges with f_{NI} = 0.9 are now straightforward
- f_{NI} = 1.0 previously demonstrated for < 1 s
- Reproducible, long pulse generation of that last 10% of noninductive current requires careful discharge optimization
 - Maximize β_{N} to increase bootstrap current
 - Achievable β_N and τ_E vs. discharge shape
 - Increase noninductively driven current
 - Divertor pumping vs. discharge shape, minimize n_e
 - 3 MW long pulse ECCD power now available
 - Avoid 2/1 tearing mode to increase duration
 - Broad ECCD deposition profile

Exploration for a scenario with $\beta_N = 5$ and profiles appropriate for steady-state is underway

- Motivated by the high power density and neutron fluence required in a demonstration power plant
- Goal is operation near the ideal MHD stability limit
- Two approaches modeled and tested experimentally
 - High internal inductance plasmas that remain below the no-wall n = 1 limit
 - $\beta_N = 4.6$ achieved for 0.4 s ($\beta_N > 4$ for 1 s) at $I_i > 1$
 - Wall-stabilized plasmas with elevated q_{min} that require stabilization of RWMs by rotation or active feedback
 - $\beta_N = 4$ achieved for 2 sec
- Priority is experimental verification that these pressure and current profiles can be produced

High noninductive fraction discharges with $q_{min} > 1.5$

Duration of f_{NI} Near 1 Extended to 0.7 τ_R Through Operation at Increased β_N Without Termination by a 2/1 NTM

- $\beta_{\rm N} = 3.5 3.7$
- Surface voltage ~0 indicates f_{NI}~1
- Reducing I_p to match the available I_{NI} increased f_{NI}
 - Reduces fusion gain parameter G
- Present limitations:
 - Neutral beam energy limits duration
 - Neutral beam and ECCD power limit I_{NI}

$f_{NI} = 0.9$ Discharges Stationary for $\tau_{R'}$ Limited by Deliverable Co-NB Energy, Not ECCD

 Constant MSE pitch angle indicates current density profile is not evolving

•
$$H_{89} = 2.3, H_{98y2} = 1.4$$

J Ferron/IAEA/Oct2008

Confinement and Achievable β_N are Optimized at Intermediate Values of the Shape Squareness

- 2006 experiments determined stability is best at low to intermediate values of squareness
 - Agrees with ideal MHD modeling of low-n kink
- 2008 squareness scans show confinement is reduced at higher squareness:
 - ELMs are smaller, less regular
 - Core rotation is lower
 - Density fluctuation level is higher

Unbalanced Double-null Minimizes n_e for Efficient Current Drive with Little Impact on Confinement

- These dRsep changes do not affect confinement
- dRsep changes made with approximately constant squareness

- Small bias away from ion Bx∇B direction reduces
- density more than balanced, or toward-Bx \(\nabla B\) case

ECCD with a Relatively Broad Deposition Profile Enhances Stability to the 2/1 Tearing Mode at High Beta

- n = 1 mode avoided in discharge with ECCD
- n = 1 appears after ECCD is turned off
- Alignment of broadly deposited ECCD with q = 2 surface not necessary for improved 2/1 stability
- Application of ECCD reduced $\tau_{\rm E}$ and $n_{\rm e}$

J Ferron/IAEA/Oct2008

High β_N Discharges with Increased Internal Inductance

$\beta_{\rm N}$ Remains Above 4, Near the No-wall n = 1 Stability Limit, for 1 s

- No-wall stability limit: $\beta_N/I_i = 3.7-4.0$
- Indicates β_N= 5 should be possible at l_i>1.4 without rotation or hardware to stabilize resistive wall modes
- Confinement well above standard H-mode value
- Current profile not yet stationary
 - Future step in scenario development

With f_{NI} at or Above 1, the $I_i > 1$ Scenario is a Candidate for Steady-state Operation

AL FUSION FACILITY

- Measured surface voltage < 0
- Agrees with transport code modeling
- Calculated f_{NI} ≈ 1.2
- Calculated f_{BS} ≈ 0.9

MHD spectroscopy indicates a reduction in n = 1 kink mode stability at $\beta_N/I_i = 4$

- Indicator is change in slope of response (red points)
- Suggests discharge exceeds the ideal MHD no-wall kink stability limit
- Approximate agreement with calculated limit

Fast-growing Bursts of 1/1 Mode Cause Drops in β_N and Trigger Tearing Modes

- After 1/1 burst:
 - n_e profile broadens, possibly improving stability
 - n = 2 mode begins
- High-performance terminated by 2/1 mode
- P ´ slightly below calculated ballooning mode limit

High Initial ℓ_i Obtained Using Long Ohmic Phase to Allow Current to Penetrate to the Axis

- Stationary ℓ_i depends on I_p/B_t
 - I_p/B_t scan performed
 - Best performance at $I_p/B_t = 0.47 \ (q_{95} \approx 7.5)$
 - Standard AT operation is at $I_p/B_t = 0.65$
- Transition to double null is a small κ ramp, increases ℓ_i
- During high β_N phase, broad J_{NI} profile results in lower ℓ_i

High β_N discharges with a very broad current profile

Off-Axis Current Driven by I_p and B_t Ramps Enabled $\beta_N \sim 4$ with an ITB at $q_{min} \sim 2$

- Computed β_N limits for kink modes with P(0)/<P> = 3 and ρ_{qmin}=0.5
- In experiment, ρ_{qmin} did not exceed ~0.5, and q_{min} evolved too quickly

Toroidal Field Ramp-down Drives Large, Off-axis, Parallel Current

• Two components of the flux-averaged, parallel, inductive current density

2007 Experiment Attempted to Increase β_N >4 Using Reverse I_p and Counter-NBI for Slower q_{min} Evolution and Higher ρ_{qmin}

- Previous fast q_{min} evolution due to too much on-axis NBCD and misalignment between j_{BS} and j_{total} peaks
- With counter-I_p, lower on -axis current density at same injected power
- ρ_{qmin} observed to increase slowly with time to ~0.6
- Instability at main ion rotation null prevented increasing β_N beyond 4*I_i*
- I_p and Bt ramps for increasing β_N and off-axis current drive

Feedback control of the current profile evolution

Goal: control the q evolution during the discharge formation in order to determine the target profile for the high β_N phase

- Evaluation of transport code ability to model the current profile evolution
 - Agreement found indicates that the physics models are sufficient for use in development of model-based real-time controllers for the q evolution
- An empirically designed q_{min} controller is available for routine use
- Tests of the efficacy of available actuators
 - The only sufficiently effective actuator is electron heating
 - Modifies σ and thus the rate of penetration of the ohmic electric field
 - Weak actuators : dl_p/dt, n_e, beam voltage, co/counter beam mixture, ECCD, FWCD

Changes in Te significantly modify the q evolution in agreement with transport code model predictions

- q profile evolves more
 slowly as Te is increased
 result of increase in σ
- Decay of q is slower in
 H-mode for comparable
 mid-radius Te
- Modeling with the ONETWO transport code
- Experiment from EFIT reconstructions

Transport code modeling successfully reproduces the change in dq_{min}/dt after a step in beam power

- Dynamic response to steps in the heating power will provide input to modelbased q controller design
- Modeling with ONETWO

Indirect control of q_{min} evolution using β_N as actuator tested for more reliable avoidance of stability limits

- PI controller applied to q_{min} error used to generate a β_N request
- β_N substitutes for <T_e>, the true actuator
- Easy to clip the β_N request to help avoid tearing modes
- Envisioned improvement: request <T>≈β_N/n_e

Only a small change in the q_{min} evolution is observed with a factor 2.75 change in the plasma current ramp rate

- H-mode
- Equal T_e (feedback controlled)
- Ramp rate scan varies the loop voltage
- Strong effect on the internal inductance
- J differences are outside the J peak at ρ ≈ 0.4

q_{min} > 1.5 scenario has been optimized toward long duration operation with high β_N and f_{NI} = 1

- Duration with surface voltage ≈ 0 extended to $0.7\tau_R$
- Intermediate discharge squareness maximizes confinement and achievable β_{N}
- Best discharge shape has dRsep ≈ +0.5 cm
 - Maximizes divertor pumping
 - Little effect on τ_E
 - Tolerable reduction in β_N limits
 - Shape bias is away from the ion ∇B drift direction
- Broad ECCD deposition enables 2/1 mode avoidance
 - Allows operation at increased β_N = 3.5-3.7
- Feedback control of q_{min} evolution available for use in regulating the high beta target
 - Transport code q evolution model validated for use in development and testing of model-based controllers
 - Empirically designed controller avoids β_N limits
 - Actuator effectiveness tested

$\beta_N > 4$ has been demonstrated in two scenarios suitable for steady-state operation with $f_{BS} > 0.5$

- Opens the possibility of a reactor with increased power density or higher q95
 - Less energy stored in the poloidal field to be released in a disruption
- $\beta_N > 4.5$ obtained with increased I_i
 - The peak β_N is less than the ideal no-wall n = 1 stability limit
 - Confinement well above standard H-mode level, $H_{98v2} = 1.8$
 - $f_{NI} > 1$, $f_{BS} > 0.8$ with $q_{min} \approx 1$
- $\beta_N \approx 4$ obtained in a discharge with a very broad current profile
 - With wall stabilization, ideal β_N limit increases with q_{min}
 - $f_{BS} > 0.6$ with $q_{min} \approx 2$

