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Introduction




Reliable production of high beta discharges with f, = 1 for

duration t; has been the recent research focus

= Stationary discharges with fy, = 0.9 are now
straightforward

e f\y = 1.0 previously demonstrated for <1 s

e Reproducible, long pulse generation of that last
10% of noninductive current requires careful
discharge optimization
— Maximize 3, to increase bootstrap current
= Achievable B and 1 vs. discharge shape

— Increase noninductively driven current
= Divertor pumping vs. discharge shape, minimize ng
< 3 MW long pulse ECCD power now available

— Avoid 2/1 tearing mode to increase duration
e Broad ECCD deposition profile




Exploration for a scenario with By = 5 and profiles

appropriate for steady-state is underway

< Motivated by the high power density and neutron
fluence required in a demonstration power plant

e Goal is operation near the ideal MHD stability limit
< Two approaches modeled and tested experimentally

— High internal inductance plasmas that remain
below the no-wall n = 1 limit

By =4.6 achieved for0.4s (B >4forls)atl>1
— Wall-stabllized plasmas with elevated q,,,,, that

require stablilization of RWMs by rotation or active
feedback

= 3y = 4 achieved for 2 sec

= Priority is experimental verification that these pressure
and current profiles can be produced




High noninductive fraction discharges with g,,,;, >1.5




Duration of fy, Near 1 Extended to 0.7 = ; Through Operation

at Increased f \ Without Termination by a 2/1 NTM

Shot 132689 133103

- Surface voltage ~0
indicates fy,~1

= Reducing |, to match
the available Iy,
Increased fy,

— Reduces fusion
gain parameter G

e Present limitations:

— Neutral beam
energy limits
duration

— Neutral beam
and ECCD power
limit 1,
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fy = 0.9 Discharges Stationary for 7, Limited by

Deliverable Co-NB Energy, Not ECCD
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Confinement and Achievable 3 are Optimized at

Intermediate Values of the Shape Squareness
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2006 experiments
determined stability is best
at low to intermediate
values of squareness

— Agrees with ideal MHD
modeling of low-n kink

2008 squareness scans
show confinement is
reduced at higher
squareness:

— ELMs are smaller, less
regular

— Core rotation is lower

— Density fluctuation level is
higher




Unbalanced Double-null Minimizes n_ for Efficient

Current Drive with Little Impact on Confinement
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ECCD with a Relatively Broad Deposition Profile Enhances

Stability to the 2/1 Tearing Mode at High Beta
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* Alignment of broadly deposited
ECCD with q = 2 surface not
necessary for improved 2/1 stability

 Application of ECCD reduced

Tg and ng
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High By Discharges with Increased Internal Inductance




B y Remains Above 4, Near the No-wall

n = 1 Stabillity Limit, for 1 s

SERE 24 ¥ RS RN R A LA e No-wall stability limit:
0l PN i[zlga?leall limit B\/li=3.7-4.0
WR% e Indicates S = 5 should
be possible at |>1.4
without rotation or
hardware to stabilize
resistive wall modes

e Confinement well above
standard H-mode value

e Current profile not yet
stationary

— Future step in scenario
development
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With fy, at or Above 1, the | >1 Scenario is a Candidate for

Steady-state Operation

Surface voltage (V)

e Measured surface
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MHD spectroscopy indicates a reduction in n = 1 kink mode

stability at B/l = 4

e Indicator is change in slope of response (red points)

e Suggests discharge exceeds the ideal MHD no-wall
kink stability limit

e Approximate agreement with calculated limit

B, (n=1) plasma response at f,,;=40Hz
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Fast-growing Bursts of 1/1 Mode Cause Drops in 3

and Trigger Tearing Modes
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= After 1/1 burst:
- n, profile broadens, possibly improving stability
— n =2 mode begins
< High-performance terminated by 2/1 mode
e P~ slightly below calculated ballooning mode limit
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High Initial /; Obtained Using Long Ohmic Phase to

Allow Current to Penetrate to the Axis
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High B, discharges with a very broad current profile




Off-Axis Current Driven by |, and B; Ramps Enabled

By~4 with an ITB a
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e Computed B, limits for kink
modes with P(0)/<P> =3 and 2.2
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From: Garofalo, Phys. Plasmas, 2006
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Toroidal Field Ramp-down Drives

Large, Off-axis, Parallel Current

e Two components of the flux-averaged, parallel, inductive current
density

Joy ~ ody/dt (poloidal flux evolution)
Jg. ~ odg/dt (toroidal flux evolution)
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2007 Experiment Attempted to Increase f,>4 Using Reverse |,

and Counter-NBI for Slower q,,, Evolution and Higher p.,

= Previous fast q,,,;, evolution
due to too much on-axis
NBCD and misalignment
between jz and j, Peaks

= With counter-1,, lower on
-axis current density at
same injected power

* Pymin ODserved to increase
slowly with time to ~0.6

e|nstability at main ion
rotation null prevented
increasing B, beyond 4,

= |, and Bt ramps for
increasing B, and off-axis
current drive
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Feedback control of the current profile evolution




Goal: control the g evolution during the discharge formation

In order to determine the target profile for the high B, phase

< Evaluation of transport code ability to model the
current profile evolution

— Agreement found indicates that the physics models
are sufficient for use in development of model-based
real-time controllers for the q evolution

< An empirically desighed q,,;, controller is available
for routine use

= Tests of the efficacy of available actuators

— The only sufficiently effective actuator is electron
heating
< Modifies ¢ and thus the rate of penetration of the ohmic
electric field

- Weak actuators : dl /dt, n,, beam voltage,
co/counter beam mixture, ECCD, FWCD




Changes in Te significantly modify the g evolution in

agreement with transport code model predictions

Two pairs of shots at different electron temperature
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Transport code modeling successfully reproduces the

change in dq,,,//dt after a step in beam power

response of g,inevolution to steps in
neutral beam power
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Indirect control of q,,,;, evolution using B, as actuator

tested for more reliable avoidance of stability limits

132554

E w w w * = e Plcontroller

é B\ requestfromq . controller | / T I = apphed to qmin
2- | e Ny ffom magneics-only error used to

= o W, i rwar equilibrium -
1; R i Eeljdfo ard reqconstruction E generate a BN
Oé Lf/_/w — dmin control 1 — By control — é requeSt ]

3 | | | | | | = e [ Substitutes for
4; -LLLJ—_L q _fror§1 real time equilibrium reconstruction with MSE data é <T > the true

& min E e

: % - actuator
2E E .
@ garget P rape: - © Easy to clip the

By request to

e i i i | | = help avoid
, maximum allowed By E tearing modes
1 By, et ° Eveloned
o : : | : _~  request

time (5) <T>~B\/n

-

IONAL FUSION FACINTY




Only a small change in the q,,,, evolution is observed with a

factor 2.75 change in the plasma current ramp rate

Three shots with different |pramp rates
3.0 valE 129403 7

F 129404
23 129405

e H-mode

e Equal T, (feedback
controlled)

< Ramp rate scan varies
the loop voltage

e Strong effect on the
Internal inductance

e Jdifferences are outside
the J peak atp = 0.4
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Ssummary




dmin > 1.5 scenario has been optimized toward long

duration operation with high B, and fy, = 1

= Duration with surface voltage = 0 extended to 0.7t

e Intermediate discharge squareness maximizes confinement
and achievable B

e Best discharge shape has dRsep ~ +0.5 cm
— Maximizes divertor pumping
— Little effect on t;
— Tolerable reduction in B limits
— Shape bias is away from the ion VB drift direction
e Broad ECCD deposition enables 2/1 mode avoidance
— Allows operation at increased = 3.5-3.7

= Feedback control of q,,;,, evolution available for use in
regulating the high beta target

— Transport code g evolution model validated for use in
development and testing of model-based controllers

— Empirically designed controller avoids B, limits
— Actuator effectiveness tested
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By > 4 has been demonstrated in two scenarios suitable for

steady-state operation with f;c > 0.5

e Opens the possibility of a reactor with increased power
density or higher g95
— Less energy stored in the poloidal field to be released in a
disruption
= B\ > 4.5 obtained with increased |,
— The peak B Is less than the ideal no-wall n = 1 stabllity limit
— Confinement well above standard H-mode level, Hgg,, = 1.8
- fy >1, fgs > 0.8 with ;=1
< B\ = 4 obtained in a discharge with a very broad current
profile
— With wall stabilization, ideal B limit increases with q,,,
— fgs> 0.6 with q,,,, = 2
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