DEPENDENCE OF THE L- TO H-MODE POWER THRESHOLD ON TOROIDAL ROTATION AND THE LINK TO EDGE TURBULENCE DYNAMICS

G. R. McKee
University of Wisconsin-Madison

D.J. Schlossberg, M.W. Shafer
University of Wisconsin-Madison

K.H. Burrell, P. Gohil, R.J. Groebner
General Atomics

L. Schmitz, G. Wang, T.L. Rhodes
University of California - Los Angeles

J.A. Boedo, R.A. Moyer, D.L. Rudakov
University of California - San Diego

M.A. Makowski, M. Umansky, X. Xu
Lawrence Livermore National Laboratory

W.M. Solomon
Princeton Plasma Physics Laboratory

22ND INTERNATIONAL ATOMIC ENERGY AGENCY FUSION ENERGY CONFERENCE

GENEVA, SWITZERLAND
OCTOBER 18, 2008
DEPENDENCE OF EDGE TURBULENCE DYNAMICS
AND THE L-H POWER THRESHOLD ON TOROIDAL ROTATION

- Power flux required to trigger an L-H transition increases rapidly with injected torque and toroidal rotation

- Edge turbulence characteristics change dramatically and consistently with toroidal rotation

- Radial electric field shear increases more rapidly at low rotation

- Connection between toroidal rotation and ion ∇B drift dependence

- Mechanism appears to depend on complex interplay of radial electric field, turbulence and zonal flow dynamics in edge region of plasma
CO-ROTATING DISCHARGE REQUIRES TWICE THE INJECTED POWER OF BALANCED INJECTION DISCHARGE TO UNDERGO L-H TRANSITION

- Upper-Single-Null plasmas: ion ∇B drift away from X-point
 - Higher L-H power threshold than with ion ∇B drift towards X-point

- Beam power ramped gradually

- Co and counter NBI sources control torque and power

- Fluctuating D_α phase determined to be L-mode

- $P_{\text{LH}, \text{co}} = 6$ MW
 $P_{\text{LH}, \text{balanced}} = 3$ MW

Graphs and Data

- $I_p = 1$ MA
- $B_T = -2$ T

International Atomic Energy Agency Fusion Energy Conference, Geneva, Switzerland - G. McKee- October, 2008
PLH Increases Significantly with Increasing Neutral Beam Torque

- Factor of 4 increase in $P_{ LH}$ with rotation and ∇B away from X-Point
- Factor of 2 increase with ∇B towards X-Point
- Difference in $P_{ LH}$ between ∇B drift directions increases with rotation
P_{LH} Increases Significantly with Increasing Neutral Beam Torque

- Factor of 4 increase in P_{LH} with rotation and ∇B away from X-Point
- Factor of 2 increase with ∇B towards X-Point
- Difference in P_{LH} between ∇B drift directions increases with rotation

Graph:
- Red dots: ∇B away from X-point
- Blue squares: ∇B towards X-point

Legend:
- Lower Single Null: ∇B towards X-Point
- Upper Single Null: ∇B away from X-Point

Axes:
- Torque (N-m)
- P_{LH} (MW)

Diagram:
- Shows ion drift and ∇B directions for different nulls.
P_{LH} INCREASES SIGNIFICANTLY WITH INCREASING NEUTRAL BEAM TORQUE

- ECH used in conjunction with NBI to examine importance of neutral beam ion orbit effects
- Density is 25% higher in ECH shots for operational reasons
- Similar trend with torque is observed:

No significant beam-orbit effect
P_{LH} INCREASES SIGNIFICANTLY WITH INCREASING NEUTRAL BEAM TORQUE

- ECH used in conjunction with NBI to examine importance of neutral beam ion orbit effects
- Density is 25% higher in ECH shots for operational reasons
- Similar trend with torque is observed

No significant beam-orbit effect
ROTATIONAL DEPENDENCE MAY EXPLAIN SIGNIFICANT UNCERTAINTY IN P_{LH} SCALING RELATION

- L-H Threshold scaling relation (red band)

 $P_{LH}^{Scaling} = 0.042 n_{20}^{0.73} B_T^{0.74} S^{0.98} (MW)$

- P_{LH} values in range of scaling relation, but large variation suggests a “hidden variable,” such as rotation
LH TRANSITION INDUCED VIA TORQUE-SCAN AT CONSTANT POWER

- $P_{LH} = 3$ MW
- Consistent with previous measurements
- Slowly evolving turbulence characteristics

∇B away from X-point

Total Beam Power (MW)

Co-Injected Power (MW) CTR-Injected Power (MW)

Toroidal Rotation (km/s)

$\rho = 0.7$

D_α Divertor Recycling

Visualizations of edge turbulence demonstrate significant variation in flow patterns and mode structure with rotation.
SIGNIFICANT DIFFERENCE IN EDGE TURBULENCE & FLOWS BETWEEN CO-INJECTION & BALANCED INJECTION (∇B AWAY FROM X-POINT)

- For $\rho = 0.9$:
 - Power Spectra (a.u.)
 - Temperature
 - Phase Shift (rad)
 - Frequency (kHz)
 - Ion Direction
 - Electron Direction
 - $\Delta Z = 1.2$ cm

- For $\rho = 0.98$:
 - Power Spectra (a.u.)
 - Temperature
 - Phase Shift (rad)
 - Frequency (kHz)
 - Ion Direction
 - Electron Direction
 - Edge v_θ Reversal
 - $129125(2050-2150 \text{ ms})$
 - $129127(1375-1475 \text{ ms})$
Plasmas with ion ∇B towards X-point exhibit similar flows as well as multiple turbulence modes.

$\rho = 0.9$

Power Spectra (a.u.)

<table>
<thead>
<tr>
<th>Frequency (kHz)</th>
<th>Power (a.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10^-9</td>
</tr>
<tr>
<td>50</td>
<td>10^-7</td>
</tr>
<tr>
<td>100</td>
<td>10^-5</td>
</tr>
<tr>
<td>150</td>
<td>10^-3</td>
</tr>
<tr>
<td>200</td>
<td>10^-1</td>
</tr>
<tr>
<td>250</td>
<td>10^0</td>
</tr>
<tr>
<td>300</td>
<td>10^1</td>
</tr>
</tbody>
</table>

Phase Shift (rad)

Ion Direction

Electron Direction

$\rho = 0.98$

2 Counter Propagating Modes

1) low-f e-mode
2) high-f i-mode

Frequency (kHz)

Multi-Mode Structure Observed in Balanced-Injection Plasmas with ∇B Away from X-Point

- Dual-mode structure observed in both balanced injection discharges with ∇B away from X-point,

 \textit{AND}

 Co-injected discharge with ∇B towards the X-point
- Two conditions have similar P_{LH}
- Correlation with dual-mode structure and lower LH power threshold

![Graph](image)

$$\rho = 0.98$$
Radially-sheared poloidal turbulence flows evolve differently for co- and balanced-injection plasmas.

- Turbulence poloidal velocity obtained via cross-correlation analysis
- Gradual evolution and increasing shear in Co-injection discharge
- Sudden “reversal” of poloidal flow in balanced prior to LH
RADIA L Y-SHEARED POLOIDAL TUR B UL E N CE FLOWS EVOLVE DIFFERENTLY FOR CO- AND BALANCED-INJECTION PLASMAS

- Turbulence poloidal velocity obtained via cross-correlation analysis
- Gradual evolution and increasing shear in Co-injection discharge
- Sudden “reversal” of poloidal flow in balanced prior to LH
LH Transition Occurs as Shearing Rates Increase and Exceed Turbulence Decorrelation Rates

- BES data allow for independent measurement of poloidal velocity, velocity shear, and turbulence decorrelation rates.

Co-Injection, ∇B away from X-point

\[\omega_s \sim (\tau_c)^{-1} \]

Decor. Rate / Shear Rate

- Decor. Rate
- Shear Rate

\[\omega_s = dv_\theta/dr \]

Velocity Shearing Rate

Turbulence Decorrelation Rate

LH Transition occurs as shearing rates increase and exceed turbulence decorrelation rates.

- BES data allow for independent measurement of poloidal velocity, velocity shear, and turbulence decorrelation rates.

Co-Injection, \(\nabla B \) away from X-point

\[\omega_s > (\tau_C)^{-1} \]

\[\omega_s = \frac{d v_\theta}{dr} \]

D. Schlossberg et al., submitted to PRL (2007)
LH Transition Induced Via Torque-Scan at Constant Power

- $P_{LH} = 3$ MW
- Consistent with previous measurements
- Slowly evolving turbulence characteristics

∇B away from X-point

Total Beam Power (MW)

Co-Injected Power (MW)

CTR-Injected Power (MW)

Toroidal Rotation (km/s)

D_α Divertor Recycling

Edge Turbulence Poloidal Flow Reverses During Constant-Power Torque Scan

- Reversed v_θ during balanced injection, shortly before LH-transition.
- Shear increases as rotation varied from co- to balanced.

Power Spectra (a.u.)

- Co-Injection
- 3/4 Co
- Balanced

Phase Shift (rad.)

- Ion Direction
- Electron Direction

Break in phase reflects dual modes

International Atomic Energy Agency Fusion Energy Conference, Geneva, Switzerland - G. McKee- October, 2008
Poloidal Velocity Spectrum Evolves From GAM-Dominated to Low-Frequency Zonal Flow as Plasma Rotation Slows

- Time-Delay-Estimation (TDE) methods applied to poloidally-separated BES measurements to determine $v_\theta(t)$ ($t = 20 \mu s$ resolution, 25 kHz)

- GAM oscillation identified in $v_\theta(t)$ spectra (E_r oscillation $\Rightarrow v_\theta(t)$)

- GAM dominates ZF spectrum at high rotation
 - gradually decays in amplitude and disappears as plasma slows

Geodesic Acoustic Mode:
- coherent
- $m=0$, $n=0$
- finite k_r
- $f=15$ kHz
 $\approx c_s/2\pi R$
Poloidal Velocity Spectrum Evolves From GAM-Dominated to Low-Frequency Zonal Flow as Plasma Rotation Slows

- Time-Delay-Estimation (TDE) methods applied to poloidally-separated BES measurements to determine $v_\theta(t)$ ($t = 20 \mu s$ resolution, 25 kHz)

- GAM oscillation identified in $v_\theta(t)$ spectra (E_r oscillation $\Rightarrow v_\theta(t)$)

- GAM dominates ZF spectrum at high rotation
 - *gradually decays in amplitude and disappears as plasma slows*

Geodesic Acoustic Mode:
- coherent
- $m=0$, $n=0$
- finite k_r
- $f \approx 15 \text{ kHz}$
 - $c_s/2\pi R$

GAM decays with time
POLIODAL VELOCITY SPECTRUM EVOLVES FROM GAM-DOMINATED TO LOW-FREQUENCY ZONAL FLOW AS PLASMA ROTATION SLOWS

- Time-Delay-Estimation (TDE) methods applied to poloidally-separated BES measurements to determine $v_\theta(t)$ ($t = 20 \mu s$ resolution, 25 kHz)

- GAM oscillation identified in $v_\theta(t)$ spectra (E_r oscillation $\Rightarrow v_\theta(t)$)

- GAM dominates ZF spectrum at high rotation
 - gradually decays in amplitude and disappears as plasma slows

- Zero-Mean-Frequency Zonal Flow arises and dominates spectra
 - ZMF-ZF power significantly higher than GAM power
 - Lower frequency shears more effectively (Hahm-1999)
 - More likely to trigger transition?

Geodesic Acoustic Mode:
- coherent
- $m=0$, $n=0$
- finite k_r
- $f = 15$ kHz $\approx c_s/2\pi R$

GAM decays with time

ZMF-ZF signature arises at low-frequency prior to LH
CONCLUSIONS

- Power flux required to trigger an L-Mode to H-mode transition increases with applied torque and toroidal rotation
 - Affects plasmas with ion ∇B drift towards and away-from X-point
 - ECH+NBI exhibit similar trend as NBI-only (not a beam ion effect)

- Edge turbulence characteristics change dramatically and consistently with toroidal rotation:
 - Radially sheared poloidal turbulence flows
 - Shear exceeds turbulence decorrelation rates prior to transition (all cases)
 - Zonal flow behavior strongly dependent on rotation: candidate trigger mechanism

- Connection between toroidal rotation and ion ∇B drift dependence

- Mechanism appears to depend on radial electric field, turbulence, flows, and zonal flow dynamics in edge region of plasma

- Beneficial implications for accessing H-mode in slowly rotating plasmas
 - Presently P_{LH} scaling does not consider rotation
Radial Electric Field Terms Favor Higher Edge E_R Shear in Balanced Injection Plasma, Facilitating L-H Transition

- Consider model of ExB shear suppression of turbulence
- ∇P term dominates E_r and E_r' near the plasma edge in balanced-INJ discharges

Radial Electric Field:

$$E_r = \frac{\nabla P}{Z I e n_i} + v_{\phi,i} B_\theta - v_{\theta,i} B_\phi$$

Eddy

Pressure Gradient

Rotation

E_r prior to LH Transition

Co-INJ $P_{INJ} = 5.9$ MW

Bal-INJ $P_{INJ} = 2.9$ MW

Radial Electric Field Terms Favor Higher Edge E_R Shear in Balanced Injection Plasma, Facilitating L-H Transition

- Consider model of ExB shear suppression of turbulence
- ∇P term dominates E_r and E_r' near the plasma edge in balanced-INJ discharges

Radial Electric Field:

$$E_r = \frac{\nabla P}{\nabla T} + v_{\phi,i}B_\theta - v_{\theta,i}B_\phi$$

E_r prior to LH Transition

$P_{\text{INJ}} = 5.9$ MW

$P_{\text{INJ}} = 2.9$ MW

$E_r, \nabla P$

E_r, vxB

Radial Electric Field Terms Favor Higher Edge E_R Shear in Balanced Injection Plasma, Facilitating L-H Transition

- Consider model of E_xB shear suppression of turbulence
- ∇P term dominates E_r and E_r' near the plasma edge in balanced-INJ discharges

Radial Electric Field:

$$E_r = \frac{\nabla P_I}{Z_I en_I} + v_{\phi,i} B_\theta - v_{\theta,i} B_{\phi}$$

Eddy

∇B away from X-point

Graphs showing E_r for Co-INJ and Bal-INJ injection with different injection powers:

- Co-INJ $P_{INJ} = 5.9$ MW
- Bal-INJ $P_{INJ} = 2.9$ MW

Co-Current and Counter-Current NBI Injection and Array of Fluctuation Diagnostics Facilitate Detailed Examination

Plan View of the DIII-D Tokamak

Doppler Reflectometer
\((v_\theta(t), \tilde{n}_e)\)

CER
\((T_i, v_{tor}, E_r)\)

BES
\((\tilde{n}(r,Z), \tilde{V}(r,Z))\)

Reciprocating Langmuir Probe
\((M, \phi, n)\)
Rapid Fluctuation Suppression Observed in Edge at LH Transition

BES Measurements of density fluctuation spectra

\[r/a = 0.95 \]

Fluctuation Power Spectrum \((V^2/\text{kHz}) \)

\[129143, \text{ ST: 1600/1700} \]
\[\text{NP:1k/NB:75, ALT-CP} \]

L-H transition

L-mode

H-mode

Fluctuation Level (a.u.)

Minor Radius \((r/a) \)

\[129143, \text{ Ch-1} \]
\[r/a = 0.90 \]

\[129143, \text{ Ch-25} \]
\[r/a = 1.02 \]

\(\nabla B \) away from X-Point

Beam ion prompt losses appear not to have a significant impact on LH transition power threshold.

- Similar discharges: (USN - Net Balanced NB Injection)
 1) More tangential beams
 2) More radial beams
- Beam ion confinement changes significantly between conditions
- LH power nearly identical: \(P_{\text{INJ}} \approx 2.9 \, \text{MW} \)

Graphs:
- \(I_p \) (MA)
- \(T_e(0) \) (keV)
- \(D_\alpha \)
- \(n_e \)

Time (ms):
Visualizations of edge turbulence demonstrate significant evolution in flow patterns and mode structure.

- 200 \(\mu \)s segments at 5 intervals

Doppler Reflectometer shows localized increase in \(v_\theta \) during torque scan

Mach Probe shows little change in SOL toroidal flow

DIIID National Fusion Facility