Advances in the Physics Basis of the Hybrid Scenario on DIII-D

by

C.C. Petty, W.P. West, J.C. DeBoo, E.J. Doyle¹, T.E. Evans, M.E. Fenstermacher², M. Groth², J.R. Ferron, G.R. McKee³, P.A. Politzer, L. Schmitz¹, S.L. Allen², M.E. Austin⁴, N.H. Brooks, T.A. Casper², M.S. Chu, C.M. Greenfield, C.T. Holcomb², A.W. Hyatt, G.L. Jackson, J.E. Kinsey, R.J. La Haye, T.C. Luce, M.A. Makowski², R.A. Moyer¹, M. Murakami⁴, T.H. Osborne, T.L. Rhodes¹, M.R. Wade, and G. Wang¹

¹University of California, Los Angeles, California ²Lawrence Livermore National Laboratory, Livermore, California ³University of Wisconsin-Madison, Madison, Wisconsin ⁴Oak Ridge National Laboratory, Oak Ridge, Tennessee

Presented at 22nd IAEA Fusion Energy Conference Geneva, Switzerland

October 13–18, 2008

Advancing Hybrid Plasmas as a Baseline Operating Scenario for ITER

- Recent experiments on DIII-D have extended the hybrid scenario towards the burning plasma regime by incorporating:
 - Low torque injection (i.e., low toroidal Mach number)
 - Strong electron heating to achieve $T_e \approx T_i$
 - Complete ELM suppression using resonant magnetic perturbation
 - Central current drive to obtain ≈100% noninductive operation
- In addition, high-performance hybrid and steady-state scenario operation has been obtained with reduced frequency of wall conditioning with a >95% graphite plasma-facing wall

Hybrid Scenario Refers to Long Duration, High Performance Discharges That Have Favorable Fusion and Neutron Fluence Characteristics for ITER

• "Advanced Inductive" Regime

• Standard "Hybrid" Regime

High fusion gain, $q_{95} = 3.1$ High neutron fluence, $q_{95} = 4.7$ 121985 117752 1.5 1.5 I_{p} (MA) 1.0 1.0 I_p (MA) $P_{NB} \times 0.1$ (MW) $P_{NB} \times 0.1 (MW)$ 0.5 0.5 0.0 0.0 β (%) β (%) β_N β_N H_{89P} H_{89P} H_{98y2} H_{98y2} 0.3 0.5 $\beta_N H_{98v2}$ 0.4 0.2 0.3 $\beta_{N}H_{98v2}$ 0.2 ITER Q=10 Reference 0.1 q_{95}^{2} ITER Q=10 Reference 0.1 0.0 0.0 2 3 5 0 6 Time (s) Time (s)

Beneficial Characteristics of Hybrid Scenario are Maintained in Slowly Rotating Plasmas

- Switch from co-NBI to nearly balanced-NBI at 3.5 s reduces toroidal Mach no. by ≈ 80%
- While confinement decreases with lower rotation, value is still good (H_{98y2} = 1.1)
- High stability limits are maintained in low rotation hybrids
 - Achieved β_N up to 3
- Benign 3/2 NTM continues to suppress sawteeth
 - Reduced flow-shear increases 3/2 island

Changes in E×B Shear Can Explain the Effect of Torque on Heat Transport

 With high toroidal rotation, E×B shear must be included in model to reproduce measure profiles

• $H_{98v2} = 1.4$ - excellent confinement!

 At low toroidal rotation, E×B shear is much less important

 H_{98y2} = 1.1 - good overall confinement still maintained

Advanced Inductive Discharges Achieve Conditions Consistent With Q > 10 in ITER With Low Rotation

- Transition to low rotation occurs at the initiation of the high β_N phase
- High performance at low rotation is maintained for t > 4τ_R
- Extrapolates to Q > 10 in ITER at 15 MA for several common scalings:

ITER89-P:Q = 10.3IPB98y2:Q = 10.2DS03: $Q = \infty$

Role of T_i > T_e in Achieving High Confinement in Hybrids Studied By Replacing Some NBI With ECH

- Maximize ECH/NBI power ratio by studying low B_t (1.3 T), low q₉₅ (3.3) advanced inductive discharges
 - Use 3rd harmonic ECH with calculated first pass absorption of 94%
- H_{98y2} decreases by ≈ 13% during ECH
- High fusion performance factor, β_NH_{98y2}/q₉₅²=0.26, achieved during ECH
 - For Q=10 on ITER, need $\beta_N H_{98y2}/q_{95}^2 = 0.20$

ECH Decreases T_i/T_e by $\approx 20\%$, Making Ion and Electron Temperatures Nearly Equal and Increasing Transport

- Increased D₂ gas injection keeps density fixed during ECH
- Toroidal rotation rate during ECH is matched in NBI-only case by adding counterinjection

- τ_{mom} ≈10% lower with ECH

- Near $\rho \approx 0.6$, χ_e increases from 1.5 \rightarrow 3.9 m²/s during ECH, while χ_i goes from 1.7 \rightarrow 2.9 m²/s
- TGLF code reproduces rise in T_e during ECH, predicts that ≈ 75% of electron transport due to high-k modes

Increase in Transport With Lower T_i/T_e Correlates With Higher Turbulence at Low and Intermediate Wavenumbers

 Beam Emission Spectroscopy measures long-wavelength (k<3 cm⁻¹) density fluctuations

 Doppler Backscattering measures intermediate-wavelength (k≈7-8 cm⁻¹) density fluctuations

Resonant Magnetic Perturbation (RMP) Has Suppressed ELMs in Hybrid Plasma With β_N =2.5

- Important advance in developing hybrid as baseline-operating scenario for ITER
- RMP applied by I-coil with toroidal mode number n=3
- ELM suppression by RMP is a resonant effect around q₉₅=3.6±0.2
- ELMs reappear when 3/2 NTM onsets around 3.4 s, slows down, and locks to the vessel wall

RMP Increases Particle Transport and Reduces Rotation During ELM Suppression, But Performance Remains High

- Reduction in H-mode pedestal responsible for ELM stabilization
- RMP non-resonant and resonant braking effects lower toroidal rotation, which reduces confinement
- Fusion performance factor $\beta_N H_{98y2}/q_{95}^2=0.20$ during ELM suppression equals value needed to obtain Q = 10 on ITER
- Changes in temperature profiles well simulated by TGLF transport model

– High-k modes ~50% of χ_e

RMP ELM Suppression in Hybrid Regime With 3/2 NTM Has Been Achieved for β_N Up to 2.2

- ELM suppressed for 1.2 s, approaching current redistribution time of 1.5 s
- Coupling at 3.8 s between 3/2 NTM and sideband of 1/1 mode increases 3/2 island size and lowers toroidal rotation rate
- Increasing β_N to 2.4 causes rotation rate of 3/2 island to quickly drop below critical level for locking (≈ 6 kHz), perhaps due to RFA
 - In future, I-coil for RMP will be redesigned to reduce drag effects

Steady-State Potential of High-Performance Hybrid Demonstrated Using Central ECCD + NBCD

- Utilizes all available cobeams and gyrotrons
 - Pulse length limited by joule limit of cobeams
- Surface loop voltage ~10 mV during peak performance phase
- β_N exceeds ideal no-wall stability limit
- High H_{98y2} achieved with strong electron heating
- Fusion performance factor β_NH_{98y2}/q₉₅²=0.14 sufficient for Q=5 on ITER

Calculated Current Drive is Consistent With Achieving ≈100% Fully Noninductive Hybrid

 Strong electron heating results in nearly equal ion and electron temperatures

NBCD 0.36 MA ECCD 0.17 MA Bootstrap 0.54 MA Despite strong central current drive, q_{min} > 1 and sawteeth are suppressed

Total	1.07	MA
lp	1.08	MA

Hybrid Current Profile Remains Broad Despite Strong Central Current Drive

- Characteristic feature of hybrids with 3/2 NTM is anomalous broadening of current profile
 - Raises q_{min} > 1 and suppresses sawteeth
- Calculated noninductive current profile is more peaked than total current profile
- Negative core value of effective ohmic current is inconsistent with time-average (positive) loop voltage profile
 - Some form of magnetic flux pumping may be broadening current profile

Good Hybrid Performance Maintained Over 3 Month Campaign with No Intervening Boronization

- Hybrids provide good high-performance benchmark operation
- Normalized performance above the ITER Q=5 Scenario
- Core Carbon Fraction not increasing
- Density well controlled
- Hybrid shot 127671 was after long entry vent and before first BZN of 2007.
- For these shots q₉₅~4.4, β_N ~2.7, β_NH₈₉~6.4

Over 6000 s of plasma operation since last BZN With no degradation in Hybrid performance

Hybrid database shows mostly favorable trends in impurities across 2006–2007 campaigns

- Core Oxygen and Carbon content remain low
- Ni, a very minor contributor to Z_{eff} and P_{RAD}, is increasing with time since BZN
- Hybrid performance is resilient with a low Z graphite wall.
- + 2006 between early and late BZN
- 🔷 2006 after late BZN
- △ 2007 after vent, before BZN
- 2007 after BZN

Conclusions

- Experiments on DIII-D show that the hybrid scenario is robust and relevant to burning plasma regime
 - Confinement remains good ($H_{98y2} > 1$) even for low torque injection ($M_t \sim 0.1$) or strong electron heating ($T_i/T_e \approx 1$)
 - Strong E×B flow shear makes confinement excellent ($H_{98y2} \sim 1.5$)
 - Low-k and intermediate-k turbulence increase with electron heating, high-k modes predicted to be important
 - Type-I ELMs completely suppressed using RMP for β_N = 2.5
 - Hybrid scenario shown to be compatible with high-performance, steady-state operation
- Hybrid performance is resilient with a low-Z graphite wall
 - Maintained good impurity and particle control even after more than 6000 s of operation since last boronization

