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Motivation and Overview 

• The development of validated transport models is essential for predicting 

the performance of ITER and other future reactor devices with confidence 

• Comparisons of turbulent transport predictions against “experimental” 

energy and particle flows are only weakly discriminating  

– the “experimental” flows are calculated via a power balance model with 
its own assumptions and limitations (e.g. for fast ion transport) 

• Much better are comparisons against directly measured characteristics 

of the underlying turbulence (e.g. spectra and correlation functions) 

• In this study, use the GYRO code to model a basic L-mode DIII-D 

discharge, and compare both predicted energy flows and fluctuation 
characteristics against experiment 
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Summary of Results 

• Local GYRO simulations match ion and electron energy flows at r/a < 0.6, but 
underpredict the flows at larger r/a 

• Local and global GYRO simulations give nearly identical predictions for the 

energy flows across the entire plasma 

• Using synthetic diagnostics, the GYRO-predicted fluctuation spectra are 

shown to agree well with experimental measurements at r/a = 0.5   

• At r/a = 0.75, GYRO underpredicts fluctuation amplitudes by an amount 

consistent with the underprediction of the energy flows, but still achieves 
relatively good agreement in the density correlation functions 

• Using the quasilinear TGLF transport model in conjunction with the new TGYRO 

transport code, the ability to perform nonlinear, predictive fixed-flow transport 
modeling is now available 
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Use Data From a Steady, Sawtooth-Free L-Mode 
Plasma for This Study 

• Obtain profiles of long wavelength density and electron temperature 

fluctuations at outboard midplane via beam emission spectroscopy 
(BES) and correlation electron cyclotron emission (CECE) radiometry 

128913
 1500 ms

BT = 2.1 T, Ip = 1 MA
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Use GYRO Code to Predict Turbulent Fluctuations 
and Transport 

• GYRO is an initial value Eulerian (continuum) 5D gyrokinetic f code 
– Documentation at: http://fusion.gat.com/theory/Gyro 

• GYRO can be run in a local (flux-tube) or nonlocal (global) mode: 

– Local: This case corresponds to the * = s/a  0 limit of the GK equations, in 
which each equilibrium profile and gradient is taken to have a fixed (and 
independent) value across the box 

– Nonlocal: spatial variation of equilibrium profiles (and their gradients) is 
retained 

• Believed to contain the necessary ingredients for quantitatively accurate 
core transport predictions 

– takes measured experimental profiles as inputs 

– equilibrium sheared ExB and toroidal rotation profiles 
– realistic geometry (Miller formulation) 

– trapped and passing electrons 

– e-i pitch angle collisions 

– finite beta (magnetic fluctuations) 
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Local GYRO Simulations Approximately Match Energy Flows 
for r/a  0.6 In Magnitude and Trend With Radius 

• Use the ONETWO code to calculate ion and electron energy flows Qi and Qe 

– GYRO error bar shows magnitude of response to 20% change in ExB 

– ONETWO error bar shows magnitude of response to using different fits to 
Thomson electron density profile measurements 
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Local GYRO Simulations Systematically Underpredict Energy 
Flows for r/a > 0.6 in This Discharge 

• Mismatches at r/a > 0.6 are too large to be reconciled with 

plausible uncertainties of local gradients 

• Cause of mismatch at larger radii unknown at this time 
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Local GYRO Simulations in Very Good Agreement With 
Global Simulation Results Everywhere but r/a = 0.35 

• Red global simulation centered at r/a = 0.5 (local * = 0.0026) 

• Blue global simulation centered at r/a = 0.35 (local * = 0.0033) 

• Nonlocality leads to reduction of local r/a = 0.35 predictions, but does 
not meaningfully impact other local results 

– Decrease likely arises from proximity to inner stable region 



C Holland/IAEA/Oct2008 

Next Step: Compare Predicted Fluctuation Characteristics at 
r/a = 0.5 and 0.75 Against Experimental Measurements 

• Use local GYRO simulation results for these comparisons 
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Comparing Fluctuation Characteristics 
at r/a = 0.5 
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• In order to do “apples-to-apples” comparisons of simulation and experiment,  

 need to not just model the turbulence, but also 

 how a given diagnostic “sees” the turbulence 

• This is done by creating a synthetic diagnostic  

 which models what the diagnostic would have  

 seen had it observed the simulation fluctuations 

– For the BES and CECE systems, this modeling 

  is done by convolving point-spread functions  

 (PSFs) that describe the spatial sensitivity of  

 each diagnostic with the fluctuation fields 

• For a synthetic diagnostic which measures fluctuations at (R0,Z0, 0), record at 
each timestep in steady-state portion of simulation: 

– A “unfiltered” reference signal 

– A synthetic signal  

Synthetic Diagnostics are an Essential Component 
of Quantitative Code-Experiment Comparisons 

Xsynthetic t( ) =
d2r PSF R R0 ,Z Z0( ) XGYRO R R0 ,Z Z0, 0 ,t( )

d2r PSF R R0 ,Z Z0( )

XGYRO R0 ,Z0, 0 ,t( )

channel “location”
(R0, Z0)

10% contours of PSF
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• Agreement between synthetic and experimental spectra requires that 

GYRO accurately reproduces both the fluctuation amplitudes and the 
poloidal mode spectra  

– Lab-frame frequency spectra is essentially Doppler-shifted poloidal mode spectrum 

– In this talk, always refer to normalized fluctuation levels  

Lab-Frame Spectra Comparisons Show GYRO in Excellent 
Agreement With BES ( ne), Overpredicts CECE ( Te) at r/a = 0.5 

X ˜ X X0
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Very Good Agreement is Found Between Synthetic and 
Experimental Density Correlation Functions at r/a = 0.5 

• Agreement in vertical correlation function C( Z) consistent with 

agreement in lab-frame power spectra 

• Solid lines are Gaussians fit to experimental BES and synthetic BES 

Radial Correlation Function Vertical Correlation Function
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Comparing Fluctuation Characteristics 
at r/a = 0.75 
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Synthetic Spectra Consistently Underpredict Experimental 
Measurements at all Frequencies at r/a = 0.75 

Qi
PB Qi

GYRO
= 2.7

Qe
PB Qe

GYRO
= 2.7

nBES nsyn = 3.3

Te
CECE Te

syn
= 3.2

• Magnitude of underprediction 

consistent with generic 

scaling of Q  X2 

• Use 

 to find 
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Synthetic Spectra Match Experiment In Shape 
But Not Magnitude at r/a = 0.75 

• If synthetic spectra are 
renormalized to contain 
same power as 
corresponding 
experimental spectra, 
find good agreement 
with measured BES and 
CECE spectral shapes 
over 40-400 kHz 
– Source of mismatch in 

Te spectra below 40 
kHz unknown 

• Is spectral shape more 
robust than magnitude?  
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Synthetic Density Correlation Functions at r/a = 0.75 Exhibit 
Similar Behavior and Agreement With Experiment as at r/a = 0.5 

Radial Correlation Function Vertical Correlation Function
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Addressing Profile Uncertainties 
Via Fixed-Flow Simulations 
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Stiff Transport Magnifies Gradient Uncertainties, 
Necessitating Flow-Matching Simulations 

• Systematic uncertainties in fitting equilibrium profiles create large 

uncertainties in local equilibrium gradients, which are magnified 

further when the stiff turbulent flows are calculated 

– Ex: fitted profiles rely on diagnostic calibrations, analyst’s selection of 

a non-unique fitting function 

• One way of addressing this issue is to predict a set of profiles 

needed to match the energy flows calculated via power 

balance, and compare these predicted profiles against 

measurements 

– Because flows are volume integrals of (computed) sources, they 

have in general less uncertainty than local gradients 

• Caveat: this approach assumes one has accurate models of the 
relevant sources 
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Use the TGLF Model to Make Initial Profile Predictions 

• TGLF is a quasilinear transport model fit against > 80 nonlinear GYRO runs 

• TGLF predictions are outside statistical uncertainties of initial spline fit, but 

systematic uncertainties remain 

TGLF
spline
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Global GYRO Simulation Using the TGLF Predicted Profiles Yields 
Significantly Improved Agreement with ONETWO Calculation 

• Using TGLF profiles, improved agreement with ONETWO 
results achieved at all r/a, particular at r/a > 0.6 

TGLF
spline

spline
TGLF
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Next Step: Flow-Matching Calculations Using 
the TGYRO Transport Driver Code 

• A new TGYRO transport code has been development to predict flow-

matching profiles using either a global GYRO or combination of 
multiple local GYRO and TGLF simulations in parallel 

• Basic global simulation algorithm: every a/cs, adjust local scale 

lengths by an amount proportional to difference between GYRO 
simulation and power balance flows at each radial location 

– Example: (a/LTi) (Qi
GYRO-Qi

PB) 

– Keep Ti and Te at center of simulation fixed, and pivot profiles about 
this point.  Contrasts with traditional approach of specifying pivot at 

some large r/a near top of pedestal. 

• First results from the local TGYRO algorithm for ITER plasmas available 

at this conference in poster TH/P8-28 by Nordman and Candy 
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Tiny Changes to TGLF Profile Predictions by TGYRO 
Yield  Exact Matches to Power Balance Flows 

• Small but finite changes to local values of TGLF profile gradients 

by TGYRO translate into essentially equivalent temperature 

profile predictions 

TGLF

spline

ONETWO

TGYRO

Ti (keV)

TGLF

spline
TGYRO
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Summary of Results 

• Local long-wavelength (k s < 1) GYRO simulations of this particular discharge 
match ion and electron energy flows calculated via ONETWO at r/a < 0.6 
within experimental uncertainties, but underpredict the flows at larger r/a. 

– Define flow as total amount of energy crossing a flux surface, specified in MW 

• Local and global GYRO simulations give nearly identical predictions for the 
energy flows, with the only meaningful difference at r/a = 0.35. 

• Using synthetic diagnostics, the GYRO-predicted density and electron 
temperature fluctuation spectra are shown to agree well with experimental 
measurements at r/a = 0.5.   

– Good agreement is also found for the density correlation functions. 

• At r/a = 0.75, GYRO underpredicts fluctuation amplitudes by an amount 
consistent with the underprediction of the energy flows, but still achieves 
relatively good agreement in the density correlation functions. 

• Using the quasilinear TGLF transport model in conjunction with the new TGYRO 
transport code, the ability to perform nonlinear, predictive fixed-flow transport 
modeling is now available 
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Backups 
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Need Only Small Changes to Fitted Profiles Inside r/a = 0.6 
to Match ONETWO Energy Flows 
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• Observe a 40%-50% attenuation of fluctuation amplitudes for both 

diagnostics  

Finite Wavenumber Sensitivities of Each Diagnostic Have 
Significant Impact on Measured Spectra 
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Primary Impact of PSF Appears in Radial Correlation 
Function 

• Agreement in vertical correlation function C( Z) consistent with 

agreement in lab-frame power spectra 

• Solid lines are Gaussians fit to experimental BES, synthetic BES, and 

unfiltered signals 

Radial Correlation Function Vertical Correlation Function
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Synthetic Spectra Consistently Underpredict Experimental 
Measurements at all Frequencies at r/a = 0.75 

Qi
PB Qi

GYRO
= 2.7

Qe
PB Qe

GYRO
= 2.7

nBES nsyn = 3.3

Te
CECE Te

syn
= 3.2

• Magnitude of underprediction 

consistent with generic 

scaling of Q  X2 

• Use 

 to find 
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Synthetic Spectra Match Experiment in Shape 
but not Magnitude at r/a = 0.75 

• If synthetic spectra are 
renormalized to contain 
same power as 
corresponding 
experimental spectra, 
find good agreement 
with measured BES and 
CECE spectral shapes 
over 40-400 kHz 
– Source of mismatch in 

Te spectra below 40 
kHz unknown 

• Is spectral shape more 
robust than magnitude?  
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Synthetic Density Correlation Functions at r/a = 0.75 Exhibit 
Similar Behavior and Agreement with Experiment as at r/a = 0.5 

Radial Correlation Function Vertical Correlation Function
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Simulations Exhibit Excellent Convergence in n  

• A 32-mode simulation with n = 4 exhibits excellent 
agreement with 16-mode n = 8 results 

– Agreement in spectral shape as well as net flow and 

fluctuation levels 

ky s 
frequency (kHz) 

Qi(ky) 

Qe(ky) 

n f( )
2

Te f( )
2
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BES and CECE Fluctuation PSF Visualizations in (R,Z) 
Plane Overlaid on Local r/a = 0.5 Fluctuations 

50% contours of BES and CECE PSFs 

• In this talk, always refer to normalized fluctuations labeled via 

X ˜ X X0
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Quasilinear TGLF Model Gives Quick and Accurate 
Approximations to Full GYRO Calculations 

• TGLF ((T)rapped Gyro-Landau-Fluid) model uses a 
combination of linear phase information and a 
semi-analytic saturation rule to quickly predict 

turbulent flows 

– Model calculates linear eigenvalues for set of 15-
moment gyro-fluid equations (per species) 

– Uses a mixing-length type saturation rule for 
fluctuation intensity        which is fit to database of  

 > 80 nonlinear GYRO runs 

– Includes both long-wavelength ITG/TEM transport and 
short-wavelength ETG-driven transport 

– By combining TGLF flow predictions with 
experimentally measured sources, one can predict a 

set of profiles necessary to match experimental flows 

– See G. Staebler’s poster TH/P8-42 for latest info 

• Simple approach: use TGLF to predict a set of 

steady-state flow-matching temperature profiles, 
then use those profiles in the GYRO calculation 
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G. M. Staebler, J. E. Kinsey, and R. E. Waltz, 
Phys. Plasmas 12 102508 (2005), 14 055909 (2007), 15 055908 (2008)
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Impact of Different Fit Choices to Electron 
Density on ONETWO Results 
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Sensitivity Studies Indicate Only “Moderate” 
Stiffness of Transport at r/a = 0.5 

• All simulations used a 20% too large ExB value 

• As for previous simulations, each column required ~3000 cpu-hours 

• All diffusivities normalized to gB = 0.866 m2/s 

Expt. base +5% -5% -10% +5% -5% -10% +5% -5% -10% 
Nn=32 

n = 4 

Nn=64 

n = 2 

Nn=20 
(max 

ky 

+25%) 

i 4.5 4.74 5.35 4.23 4.05 4.83 5.00 4.87 4.72 5.30 5.47 5.18 5.26 5.74 

e 2.1 2.38 2.67 2.17 2.05 2.46 2.53 2.42 2.49 2.56 2.52 2.63 2.72 2.84 

Dne 0.05 0.75 0.89 0.64 0.58 0.71 0.87 0.90 0.77 0.84 0.87 0.86 0.88 0.92 

a/LTi

Q =
3

2
˜ p ˜ V r = n

dT

dr
                   = ˜ n ˜ V r = D

dn

dr

a/LTe a/Lne box size
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Parameter Scans Show r/a = 0.75 Results Are 
Numerically Robust 

• Each row used >= 4096 processor-hours on Jaguar 

• No ExB shear used in these cases 


