Two sets of MHD simulations are presented in which resonant magnetic perturbation (RMP) vacuum fields are imposed on DIII-D equilibria.

Three simulations with DIII-D shot 113317 (NIMROD code is used for all simulations)

- Not an RMP experimental discharge
- Measured density and temperature profiles
- Three artificially imposed rotation profile
- 3 kA even parity I-coil currents
- Measured error fields + 1 kA C-coil currents
- \(S = t_{e,0} / t_{e,0} = 3 \times 10^9 \)

Four simulations with DIII-D shot 119690

- Low collisionality odd parity I-coil experiment
- \(\Psi = \Delta + \Delta^{-} = \Psi \)

Comparison of simulations with cylindrical error field theory

- Theory does not include any toroidal effects such as mode coupling, hence the comparison can give some insight into the importance of realistic geometry

Experimental Profiles

- \(\Psi_{R} \) and \(\Psi_{P} \) for 113317
- \(\Psi_{R} \) and \(\Psi_{P} \) for 119690

Conclusions

- NIMROD simulations of DIII-D plasmas with RMP fields show:
 - Increased screening of vacuum fields with increased edge rotation
 - \(\omega_{e} \) convection near the separatrix can pump particles into the vacuum region
 - A reduction of \(\omega_{e} \) convection cell velocity with: increased edge rotation, decreased resistivity, decreased resonant mode amplitude (odd parity I-coils)
 - Compared with cylindrical error field theory, more realistic model tends to predict larger resonant mode amplitudes and shows qualitative anomalies likely linked to toroidal mode coupling effects