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 Comprehensive control of the resistive wall mode (RWM) is a prerequisite for achieving 
steady-state commercial fusion reactors based on the Advanced Tokamak concept [1]. The 
RWM is an ideal-kink mode branch, excited due to the finite resistivity of the external wall 
surrounding the plasma when beta exceeds the ideal MHD no-wall stability limit. The exis-
tence of high beta regimes stable to the RWM and above the no-wall beta limit was success-
fully demonstrated at low plasma rotations in DIII-D and JT-60U [2,3]. However, low 
rotation plasmas are prone to the onset to neoclassical tearing modes (NTMs) [4]. 
Furthermore, even in this rotationally-stabilized regime, the robustness of steady-state 
operation is not unconditionally guaranteed. DIII-D experiments have shown that MHD 
activity such as edge localized mode (ELM) events and fishbones can cause a sudden 
increase in amplitude of the RWM within 10-100 microseconds (i.e., on the quasi-MHD time 
scale). The plasma rotation profile changes as a result of these events and the recovery 
towards the stable profile takes substantial time, especially when the momentum input is lim-
ited. It is demonstrated that fast feedback can reduce the amplitude of the RWM excited by 
MHD events and prevent a continuous deterioration in the plasma performance. At the same 
time, slow feedback control is also needed to control the plasma response to error fields. 

Neoclassical tearing modes (m/n=2/1) at low rotation were eliminated by applying 
electron cyclotron current drive at the q=2 surface [5]. High beta plasma operation regime 
free of NTMs and RWMs was expanded with 
rotation below that previously reported in [2]. 

In rotationally-stabilized plasma above the no-
wall stability limit, every ELM event can produce 
an n=1 RWM of 3-5 Gauss and cause a change in 
rotation at the q=2 surface by 5%-10% within a 
few ms, in some cases leading to collapse of rota-
tion and . The efficacy of feedback is demon-
strated in Fig. 1 where normalized  ( N  a / ) 
was increased well above the no-wall limit esti-
mated as 4li, where li is the internal inductance. 
Simple feedback logic with proportional gain only 
is found to be sufficient to shorten the decay time 
of the perturbation from up to 5 ms in the high N 
phase without feedback to values of typically 
1 ms with feedback. A simple model showed that 
the critical parameter for ELM-driven RWM 
growth is the RWM magnitude established during 
the ELM crash on the quasi-MHD time scale. The 

Fig. 1. In a high N discharge, the efficacy of 
feedback was monitored with repetitive 
short periods with feedback off. The decay 
time of the perturbation of up to 5 ms 
without feedback decreases with feedback 
(using simple proportional gain). Note that 
the long decay time occurs only when N 
exceeds the no-wall stability limit, estimated 
as N = 4li. 
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vast variation in the RWM magnitude at the ELM crash, 3-30 Gauss, is attributable as the 
cause of the random appearance of the  collapse. 

 The feedback system is most effective in controlling ELM-driven RWMs in combination 
with dynamic (real-time) error field compensation against residual error field, even when 
carefully pre-programmed error field correction has been prepared before the shot. The 
magnitude of the resonant field amplification (RFA) due to a weakly stable RWM evolves in 
time, even with a fixed external error field. Therefore, the error field correction to minimize 
the RFA amplitude must be adjusted in real-time. In DIII-D, two independent non-
axisymmetric coils systems, one inside and the other outside of the vacuum vessel, are 
available. With proper feedback settings of two systems in conjunction, improved control of 
RFA and ELM events was demonstrated, thereby avoiding the beta collapse (Fig. 2). 

 Feedback at very low rotation remains a challenging task and does not always provide 
robust control. One such case is the onset of a slowly growing neoclassical tearing mode. 
Another possible limitation could arise from a loss of mode-rigidity during feedback, which 
has been studied using the NMA 
stability code [6]. It is predicted 
that feedback can excite a multi-
tude of stable RWMs that couple 
to the original unstable RWM. 
This causes the mode structure, 

especially the patterns of the eddy 

currents on both the resistive wall 

and the plasma to deform during 

the feedback process. The non-
rigidity is substantial when the 
plasma beta is high and the feed-
back coils are located outside of 
the vacuum vessel (Fig. 3). Non-
rigidity is minimized by optimiz-
ing the coupling of the feedback 
coils to the primarily unstable 
RWM. The relevance of this 
phenomenon to ITER is 
studied for various proposed 
alternative feedback coil 
configurations. 
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Fig. 3. An example of inefficient feedback configuration. Using 
external C-coil feedback at high  results in large changes to the 
mode structure. The helicity switches from being positive to nega-
tive as  varies from (a) just above the no-wall limit to (b) just 
below the ideal-wall stability limit. 

Fig. 2. While a feedback system with a fast response only 
(internal I-coil) fails to avoid the rotation (and ) collapse 
caused by ELM-driven RWMs (a-e), the combination of two 
feedback systems with slow real-time error field correction 
(external C-coil) and fast feedback (internal I-coil), can 
sustain the discharge (f-j). 


