Transport Improvement Near Low Order Rational q Surfaces in DIII–D

M.E. Austin¹

With

K.H. Burrell², R.E. Waltz², K.W. Gentle¹, E.J. Doyle⁸, P. Gohil², C.M. Greenfield², R.J. Groebner², W.W. Heidbrink³, Y. Luo³, J.E. Kinsey⁴, M.A. Makowski⁵, G.R. McKee⁶, R. Nazikian⁷, C.C. Petty², R. Prater², T.L. Rhodes⁸, M.W. Shafer⁶, M.A. Van Zeeland²

¹University of Texas, Austin
²General Atomics
³University of California, Irvine
⁴Lehigh University
⁵Lawrence Livermore National Laboratory
⁶University of Wisconsin Madison
⁷Princeton Plasma Physics Laboratory
⁸University of California Los Angeles

Presented at the 21st IAEA Fusion Energy Conference Chengdu, China

October 16-21, 2006

Motivation

- In tokamak devices it has been found that low order rational q surfaces play a key role in the formation of internal transport barriers (ITBs)
- Most often seen in negative central shear discharges at low power as q_{min} reaches integer values -> ITB triggered typically near q_{min}=2
- Recent advances in theory and diagnostics provide information for new model for transport changes at integer

 q_{\min}

- Theory of zonal flow structures, profile corrugations
- Detailed measurements of transport, turbulent fluctuation levels, and $E_{\rm r}$

Core barrier triggering studied near marginal conditions

Changes in transport seen in DIII-D as q_{\min} traverses integer values

•Persistent core barrier forms in T_i after 1200 ms, triggered at $q_{min}=2$ crossing

Integer q_{\min} time is determined accurately from Alfvén cascades

- RSAE Reverse shear Alfvén eigenmodes (cascades) are visible in FIR scattering ñ_e data
- q_{\min} vs time obtained from MSE-EFITs and and q_{\min} =integer pinpointed using Grand Cascades
- *S. Sharapov, et al, Phys. Plasmas* 2002
- R. Nazikian, et al, IAEA 2004

Transport improvement precedes appearance of rational surface

- •Lower NB power (2.5 MW) produces transient confinement improvement
- •Temperature rise starts 10-12 ms before q_{min}=2
- *T*_i , *T*_e rise continues for a similar interval afterwards

Reconnection and island formation not seen as trigger

- Transport changes preceding integer q_{min} is primary evidence
- Generally no low n modes detected on magnetics near q_{min} =integer time in low- β phase
- Modes appear later as β increases

$\delta T_{\rm e}$ change shows definite barrier signature

- $\delta T_{\rm e}$ profiles referenced to 14 ms before $q_{\rm min}$ =2 time
- \bullet Dipole change in $T_{\rm e}$ observed about $q_{\rm min}$ radius

$T_{\rm e}$ gradient steepens before and after $q_{\rm min}$ =2, dips at $q_{\rm min}$ =2

- *T*_e gradients derived from adjacent ECE channels
- Changes shown are near and just inside radius of $q_{\rm min}, \ \rho \sim 0.45$
- Further evidence of transport changes preceding $q_{\min}=2$

$T_{\rm e}$ gradient changes are similar for 5 MW case

- T_e gradient measurements underscore the locally transient nature of transport changes
- •Gradients steepen starting at $q_{\min} \approx 2.02$

Confinement changes propagate in with q=2 surface

- Structures in grad_*T*_e follow q=2 in time
- Magnitude of effect tracks change in shear

Experimental T_{e} gradient structures near q_{min} =2 match GYRO code predictions

• Profiles produced in GYRO simulations have large profile corrugations tied to low order rational surfaces

•These corrugations correspond to the various components of the time and flux surface averaged n=0 zonal flows on top of to the given smooth equilibrium

<u>GYRO Code</u>

- GYRO is a global gyrokinetic code containing the "full physics" required to accurately simulate all steady state transport flows from given smooth equilibrium experimental profiles:
 - -ITG mode physics
 - -trapped & passing electrons
 - -collisions
 - -finite-beta

- -real geometry
- -equilibrium ExB & v_par shear
- -finite rho-star
- All included here

GYRO runs show corrugations in grad_T_e/T_e at low order rational q values near a q_{min}

- The -grad(Te)/Te corrugations near vanishing shear, i.e. at q_min, are larger than for monotonic q profiles
- This run: time average after nonlinear saturation from a given snap shot q_min = 1.98 profile

• It has been shown that the GYRO corrugations follow the inner and outer q=2/1 surfaces as they slowly drift inward and outward

GYRO corrugations qualitively similar to experimental T_e gradient structures

Profile corrugations, zonal flows, and transport at low order rational q

- Zonal flows are low (near zero) frequency, poloidally and toroidally symmetric electrostatic potential structures which vary only in radius on a small scale. They have time averages which are distinguished from the "smooth" background equilibrium only by their small scale
 - n=0 zonal flows are nonlinearly driven by high-n microturbulence modes
 - The ExB shearing in the n=0 zonal flows nonlinearly saturate and regulate the high-n modes
- The transport flow carried by the high-n micro-modes is localized about many m/n surfaces
- The divergence of the transport flow driving the zonal flows is strongly corrugated where the density of rational q surfaces is low resulting in a time averaging flattening of the Te (and Ti,n,phi) profiles at the low-order surfaces

GYRO results show profile corrugations are locked to integer q surface

- \bullet | $\nabla T_{\rm e}$ | highest where dens. of rational magnetic surfaces changes most rapidly
- $|\nabla T_e|$ is reduced at q=2 surface
- Increased $\mid\! \nabla T_e\!\mid$ starts when q_{min} is slightly above 2

Corrugations related to density of rational surfaces

- Many devices have seen transport changes correlated with low order rational q values – tokamaks, stellarators
- The flattened T_{e} -corrugations and enhanced ExB shear rates (not shown) result from low density of rational surfaces and results in slightly reduced flow at the low order surfaces
- Electrostatic GYRO reruns show nearly same level of corrugations hence not a magnetic island effect

New model for core transport barrier formation in tokamak plasmas

• We have developed a new model of core barrier formation for the case where q_{min} approaches a low-order rational value (e.g. q_{min} =>2) based on gyrokinetic simulations with the GYRO code

• Model involves effects of magnetic geometry on zonal flows, which lead to long-lived Er structures of significant radial extent when qmin passes through integer values

– Effect is enhanced by the vanishing magnetic shear at \textbf{q}_{min} in NCS discharges

- Model provides a natural connection between magnetic structure, zonal flows, and transport through the zonal-flow-induced ExB shear
- Interplay of zonal-flow-induced ExB shear and ExB shear from equilibrium rotation provides the explanation for the power threshold for the formation of sustained core transport barriers

χ_i drops at q_{\min} =2 and remains low

- TRANSP runs confirm improvement in ion confinement
- $\chi_{\rm e}$ shows slow improvement, proportional to current soak-in, but no step changes
- Short time scale transport changes not expected to show up in TRANSP analysis

Localized jump in poloidal velocity occurs at q_{\min} =2 trigger event

- BES measures turbulent (eddie) velocity using multipoint correlation analysis
- Observed radial variation of velocity represents very large shear
- BES measurement near R_{qmin}

Decrease in density fluctuations coincides with local drop in χ_e near integer q_{min}

• Dip in fluctuations is localized to q_{\min} radius – not seen in channels farther out

Drop in intermediate-k fluctuations starts at time of $q_{\min}=2$

- Both transient and long term changes are seen in intermediate *k* data
- The persistent reduction is consistent with steady state core barrier

Core ion confinement follows standard ExB shear suppression of turbulence

- Before transition, shearing rate is insufficient for ITG suppression
- $\gamma_{\text{ExB}} \ge \gamma_{\text{max}}$ to suppress ITG
- Event near q_{\min} =2 pushes plasma into improved core confinement regime

Balanced NBI gives only transient confinement improvement

- Results from recent experiment using new counter injection beamline
- Rotational ExB shear is low-although no analysis yet, expect $\gamma_{\text{ExB}} < \gamma_{\text{max}}$
- Obtained BES \tilde{n}_e/n_e radial scans and FIR low, intermediate, and high k data

Reduced tor. rotation and lack of barrier formation in accordance with model

Conclusions

- Ion and electron transport is seen to change in the vicinity of integer q_{\min} values. Electron transport reduction is transient; ion transport reduction can be transient or a core barrier can form.
- Confinement improvement precedes the q_{min}=integer time by a small interval; magnetic islands are not required for triggering.
- Low and intermediate k turbulent fluctuations are seen to reduce near integer q; intermediate k turbulence remains at reduced levels during the ITB phase
- The observed T_e gradient structures near integer q_{min} match predictions from GYRO simulations and constitutes the measurement of the T_e component of a zonal flow structure.
- A model for ITB formation at low-order rational q surfaces is developed based on the addition of zonal-flow-induced ExB shear to the equilibrium ExB shear that impels the plasma into an improved confinement state.

