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In tokamak devices it has been found that low order
rational g surfaces play a key role in the formation of
Internal transport barriers (ITBs)
Most often seen in negative central shear discharges at low
power as q,,,, reaches integer values —> ITB triggered
typically near q,,,,=2
Recent advances in theory and diagnostics provide
Information for new model for transport changes at integer
CImin

— Theory of zonal flow structures, profile corrugations

— Detailed measurements of fransport, turbulent fluctuation
levels, and E,




Core barrier triggering studied near

marginal conditions

e Early NB heating
In current ramp-up
generates NCS

e Low power (2-5
MW) is used for g-
triggered cases
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Changes in transport seen in DIII-D as q,,;,

traverses integer values
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Integer q,,,,, time Is determined accurately

from Alfvén cascades

e RSAE — Reverse shear shot 121720, mmspc3, log scale of utopower)”%n%eé%sitv
Alfvén eigenmodes
(cascades) are visible
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Transport improvement precedes appearance of

rational surface
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Reconnection and island formation

not seen as trigger

e Transport changes 121720 Amplitude Spectrum
preceding integer q,,,
IS primary evidence
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dT, change shows definite barrier signature
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T, gradient steepens before and after q,,,,=2,

dips at q,,,,,=2

ECE Te gradients
. . 4.0F
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T, gradient changes are similar for 5 MW case
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Confinement changes propagate in

with g=2 surface

inwards outwards
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Experimental T, gradient structures near q,,,;,=2

match GYRO code predictions

 Profiles produced in GYRO simulations have large profile corrugations
tied to low order rational surfaces

*These corrugations correspond to the various components of the time
and flux surface averaged n=0 zonal flows on top of to the given
smooth equilibrium

GYRO Code

e GYRO is a global gyrokinetic code containing the "full physics" required to
accurately simulate all steady state transport flows from given smooth
equilibrium experimental profiles:

-ITG mode physics -real geomeitry
-trapped & passing electrons -equilibrium ExB & v_par shear
-collisions -finite rho-star

-finite-beta - All included here




GYRO runs show corrugations in grad_T_/T, at low

order rational q values near a q,,,
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GYRO corrugations qualitively similar to

experimental T, gradient structures
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Profile corrugations, zonal flows, and transport

at low order rational g

e /onal flows are low (near zero) frequency, poloidally and
toroidally symmetric electrostatic potential structures which
vary only in radius on a small scale. They have time
averages which are distinguished from the "smooth”
background equilibrium only by their small scale

— n=0 zonal flows are nonlinearly driven by high-n micro-
turbulence modes

— The ExB shearing in the n=0 zonal flows nonlinearly saturate
and regulate the high-n modes

* The transport flow carried by the high-n micro-modes is
localized about many m/n surfaces

 The divergence of the transport flow driving the zonal flows
Is sfrongly corrugated where the density of rational g
surfaces is low resulting in a fime averaging flattening of the
Te (and Ti,n,phi) profiles at the low-order surfaces




GYRO results show profile corrugations are

locked to integer q surface

* | VI, | highest where dens. of rational magnetic surfaces changes most rapidly
* | VI, |is reduced at g=2 surface
* Increased | VI, | starts when g, is slightly above 2
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Corrugations related to density of rational surfaces

e Many devices have seen
transport changes correlated
with low order rational g values —
tokamaks, stellarators

e The flattened T.-corrugations
and enhanced ExB shear rates
(not shown) result from low
density of rational surfaces and
results in slightly reduced flow
at the low order surfaces

e Electrostatic GYRO reruns show
nearly same level of corrugations
hence not a magnetic island
effect
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New model for core transport barrier formation

In tokamak plasmas

* We have developed a new model of core barrier formation
for the case where g, approaches a low-order rational

value (e.g. q.,,=>2) based on gyrokinetic simulations with the
GYRO code

* Model involves effects of magnetic geometry on zonal
flows, which lead to long-lived Er structures of significant
radial extent when gmin passes through integer values

— Effect is enhanced by the vanishing magnetic shear at g, in
NCS discharges

* Model provides a natural connection between magnetic
structure, zonal flows, and transport through the zonal-flow-
induced ExB shear

e Interplay of zonal-flow-induced ExB shear and ExB shear
from equilibrium rotation provides the explanation for the

power threshold for the formation of sustained core fransport
barriers




x drops at q,,,,=2 and remains low

e TRANSP runs confirm
improvement in ion
confinement

* A Shows slow

improvement, proportional
to current soak-in, but no
step changes

e Short time scale transport
changes not expected to
show up in TRANSP analysis
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Localized jump in poloidal velocity occurs at

Omin=2 trigger event
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Decrease Iin density fluctuations coincides with

local drop In ¥, near integer q,,,,
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Drop Iin intermediate-k fluctuations starts at

time of q,,,,,=2
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Core ion confinement follows standard ExB

shear suppression of turbulence

e Before transition, shearing
rate is insufficient for ITG
suppression

* Y = Ymax 1O SUppPress ITG

* Event near q,,,=2 pushes
plasma into improved core
confinement regime
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Balanced NBI gives only transient confinement

Improvement

e Results from recent
experiment using new
counter injection beamline

e Rotational ExB shear is low-
although no analysis yet,

expec’r YExB < Ymox

e Obtained BES n./n, radial
scans and FIR low,
intermediate, and high k
data
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Reduced tor. rotation and lack of barrier

formation in accordance with model
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Conclusions

* lon and electron transport is seen to change in the vicinity of integer
d.i, Values. Electron transport reduction is transient; ion transport
reduction can be transient or a core barrier can form.

* Confinement improvement precedes the q,,,=integer time by a small
interval, magnetic islands are not required for triggering.

* Low and intermediate k turbulent fluctuations are seen to reduce
near integer q; intermediate k turbulence remains at reduced levels
during the ITB phase

* The observed T, gradient structures near integer q,,,,, match
predictions from GYRO simulations and constitutes the measurement
of the T, component of a zonal flow structure.

A model for ITB formation at low-order rational g surfaces is
developed based on the addition of zonal-flow-induced ExB shear to
the equilibrium ExB shear that impels the plasma into an improved
confinement state.






