Transport Improvement Near Low Order Rational q Surfaces in DIII-D

M.E. Austin\(^1\)

With

K.H. Burrell\(^2\), R.E. Waltz\(^2\), K.W. Gentle\(^3\), E.J. Doyle\(^8\), P. Gohil\(^2\),
C.M. Greenfield\(^2\), R.J. Groebner\(^2\), W.W. Heidbrink\(^3\), Y. Luo\(^3\),
J.E. Kinsey\(^4\), M.A. Makowski\(^5\), G.R. McKee\(^6\), R. Nazikian\(^7\),
C.C. Petty\(^2\), R. Prater\(^2\), T.L. Rhodes\(^8\), M.W. Shafer\(^6\), M.A. Van Zeeland\(^2\)

\(^1\)University of Texas, Austin
\(^2\)General Atomics
\(^3\)University of California, Irvine
\(^4\)Lehigh University
\(^5\)Lawrence Livermore National Laboratory
\(^6\)University of Wisconsin Madison
\(^7\)Princeton Plasma Physics Laboratory
\(^8\)University of California Los Angeles

Presented at the

21st IAEA Fusion Energy Conference
Chengdu, China

October 16-21, 2006
Motivation

- In tokamak devices it has been found that low order rational q surfaces play a key role in the formation of internal transport barriers (ITBs).
- Most often seen in negative central shear discharges at low power as q_{min} reaches integer values → ITB triggered typically near $q_{\text{min}}=2$.
- Recent advances in theory and diagnostics provide information for new model for transport changes at integer q_{min}:
 - Theory of zonal flow structures, profile corrugations
 - Detailed measurements of transport, turbulent fluctuation levels, and E_r.
Core barrier triggering studied near marginal conditions

- Early NB heating in current ramp-up generates NCS
- Low power (2–5 MW) is used for q-triggered cases
Changes in transport seen in DIII-D as q_{min} traverses integer values

- Persistent core barrier forms in T_i after 1200 ms, triggered at $q_{\text{min}} = 2$ crossing
Integer q_{min} time is determined accurately from Alfvén cascades

- RSAE – Reverse shear Alfvén eigenmodes (cascades) are visible in FIR scattering \tilde{n}_e data
- q_{min} vs time obtained from MSE-EFITs and $q_{\text{min}}=\text{integer}$ pinpointed using Grand Cascades

R. Nazikian, et al, IAEA 2004
Transport improvement precedes appearance of rational surface

- Lower NB power (2.5 MW) produces transient confinement improvement
- Temperature rise starts 10-12 ms before $q_{\text{min}}=2$
- T_i, T_e rise continues for a similar interval afterwards
Reconnection and island formation not seen as trigger

- Transport changes preceding integer q_{min} is primary evidence
- Generally no low n modes detected on magnetics near $q_{\text{min}}=$integer time in low-β phase
- Modes appear later as β increases
\(\delta T_e \) change shows definite barrier signature

- \(\delta T_e \) profiles referenced to 14 ms before \(q_{\text{min}} = 2 \) time
- Dipole change in \(T_e \) observed about \(q_{\text{min}} \) radius
\(T_e \) gradient steepens before and after \(q_{\text{min}} = 2 \), dips at \(q_{\text{min}} = 2 \)

- \(T_e \) gradients derived from adjacent ECE channels
- Changes shown are near and just inside radius of \(q_{\text{min}}, \rho \sim 0.45 \)
- Further evidence of transport changes preceding \(q_{\text{min}} = 2 \)
T_e gradient changes are similar for 5 MW case

- T_e gradient measurements underscore the locally transient nature of transport changes.
- Gradients steepen starting at $q_{min} \approx 2.02$.

![Graph showing ECE T_e gradients with q_{min} and ρ values]
Confinement changes propagate in with $q=2$ surface

- Structures in $\text{grad}_T e$ follow $q=2$ in time
- Magnitude of effect tracks change in shear
Experimental T_e gradient structures near $q_{min}=2$ match GYRO code predictions

- Profiles produced in GYRO simulations have large profile corrugations tied to low order rational surfaces
- These corrugations correspond to the various components of the time and flux surface averaged $n=0$ zonal flows on top of the given smooth equilibrium

GYRO Code

- GYRO is a global gyrokinetic code containing the "full physics" required to accurately simulate all steady state transport flows from given smooth equilibrium experimental profiles:
 - ITG mode physics
 - trapped & passing electrons
 - collisions
 - finite-beta
 - real geometry
 - equilibrium ExB & v_{par} shear
 - finite rho-star
 - All included here
GYRO runs show corrugations in $\text{grad}_T \frac{T_e}{T_e}$ at low order rational q values near a q_{min}.

- The $-\text{grad}(T_e)/T_e$ corrugations near vanishing shear, i.e. at q_{min}, are larger than for monotonic q profiles.
- This run: time average after nonlinear saturation from a given snapshot $q_{\text{min}} = 1.98$ profile.
- It has been shown that the GYRO corrugations follow the inner and outer $q=2/1$ surfaces as they slowly drift inward and outward.

![Diagram showing GYRO simulation](image)
GYRO corrugations qualitively similar to experimental T_e gradient structures

T_e gradients from ECE

121717

$t=1131$ ms, $q_{\text{min}}=2.03$

$t=1162$ ms, $q_{\text{min}}=1.98$

GYRO simulation

q_{min}

1.98

q profile

$q=2$
Profile corrugations, zonal flows, and transport at low order rational q

- Zonal flows are low (near zero) frequency, poloidally and toroidally symmetric electrostatic potential structures which vary only in radius on a small scale. They have time averages which are distinguished from the "smooth" background equilibrium only by their small scale
 - $n=0$ zonal flows are nonlinearly driven by high-n micro-turbulence modes
 - The ExB shearing in the $n=0$ zonal flows nonlinearly saturate and regulate the high-n modes
- The transport flow carried by the high-n micro-modes is localized about many m/n surfaces
- The divergence of the transport flow driving the zonal flows is strongly corrugated where the density of rational q surfaces is low resulting in a time averaging flattening of the Te (and Ti,n,ϕ) profiles at the low-order surfaces
GYRO results show profile corrugations are locked to integer q surface

- $|\nabla T_e|$ highest where dens. of rational magnetic surfaces changes most rapidly
- $|\nabla T_e|$ is reduced at $q=2$ surface
- Increased $|\nabla T_e|$ starts when q_{min} is slightly above 2
Corrugations related to density of rational surfaces

- Many devices have seen transport changes correlated with low order rational q values – tokamaks, stellarators
- The flattened T_e-corrugations and enhanced $E \times B$ shear rates (not shown) result from low density of rational surfaces and results in slightly reduced flow at the low order surfaces
- Electrostatic GYRO reruns show nearly same level of corrugations hence not a magnetic island effect
New model for core transport barrier formation in tokamak plasmas

• We have developed a new model of core barrier formation for the case where q_{min} approaches a low-order rational value (e.g. $q_{\text{min}} => 2$) based on gyrokinetic simulations with the GYRO code

• Model involves effects of magnetic geometry on zonal flows, which lead to long-lived Er structures of significant radial extent when q_{min} passes through integer values
 – Effect is enhanced by the vanishing magnetic shear at q_{min} in NCS discharges

• Model provides a natural connection between magnetic structure, zonal flows, and transport through the zonal-flow-induced ExB shear

• Interplay of zonal-flow-induced ExB shear and ExB shear from equilibrium rotation provides the explanation for the power threshold for the formation of sustained core transport barriers
χ_i drops at $q_{\text{min}}=2$ and remains low

- TRANSP runs confirm improvement in ion confinement
- χ_e shows slow improvement, proportional to current soak-in, but no step changes
- Short time scale transport changes not expected to show up in TRANSP analysis
Localized jump in poloidal velocity occurs at \(q_{\text{min}} = 2 \) trigger event

- BES measures turbulent (eddie) velocity using multipoint correlation analysis
- Observed radial variation of velocity represents very large shear
- BES measurement near \(R_{q_{\text{min}}} \)
Decrease in density fluctuations coincides with local drop in χ_e near integer q_{min}

- Dip in fluctuations is localized to q_{min} radius – not seen in channels farther out
Drop in intermediate-k fluctuations starts at time of $q_{\text{min}} = 2$

- Both transient and long term changes are seen in intermediate k data
- The persistent reduction is consistent with steady state core barrier
Core ion confinement follows standard ExB shear suppression of turbulence

- Before transition, shearing rate is insufficient for ITG suppression
- \(\gamma_{ExB} \geq \gamma_{max} \) to suppress ITG
- Event near \(q_{min}=2 \) pushes plasma into improved core confinement regime
Balanced NBI gives only transient confinement improvement

- Results from recent experiment using new counter injection beamline
- Rotational ExB shear is low—although no analysis yet, expect $\gamma_{\text{ExB}} < \gamma_{\text{max}}$
- Obtained BES \bar{n}_e/n_e radial scans and FIR low, intermediate, and high k data
Reduced tor. rotation and lack of barrier formation in accordance with model
Conclusions

- Ion and electron transport is seen to change in the vicinity of integer \(q_{\text{min}} \) values. Electron transport reduction is transient; ion transport reduction can be transient or a core barrier can form.

- Confinement improvement precedes the \(q_{\text{min}}=\text{integer} \) time by a small interval; magnetic islands are not required for triggering.

- Low and intermediate \(k \) turbulent fluctuations are seen to reduce near integer \(q \); intermediate \(k \) turbulence remains at reduced levels during the ITB phase.

- The observed \(T_e \) gradient structures near integer \(q_{\text{min}} \) match predictions from GYRO simulations and constitutes the measurement of the \(T_e \) component of a zonal flow structure.

- A model for ITB formation at low-order rational \(q \) surfaces is developed based on the addition of zonal-flow-induced ExB shear to the equilibrium ExB shear that impels the plasma into an improved confinement state.