Transport and Deposition of ¹³C from Methane Injection Into L- and H-mode Plasmas in DIII–D

by S.L. Allen*

for

N.H. Brooks,[†] J.D. Elder,[‡] M.E. Fenstermacher,^{*} M. Groth,^{*} C.J. Lasnier,^{*} A.G. McLean,[‡] V. Phillips,[¶] G.D. Porter,^{*} D.L. Rudakov,[§] P.C. Stangeby,[‡] W.R. Wampler,[#] J.G. Watkins,[#] W.P. West,^{*} and D.G. Whyte,[△]

*Lawrence Livermore National Laboratory, Livermore, California, USA [†]General Atomics, San Diego, California, USA [‡]University of Toronto Institute for Aerospace Studies, Toronto Canada. [¶]FZJ Jülich GmbH/Euratom Institut für Plasmaphysik, Jülich, Germany. [§]University of California, San Diego, California, USA [#]Sandia National Laboratory, Albuquerque, New Mexico, USA ^ΔMassachusetts Institute of Technology, Cambridge, Massachusetts, USA

Presented at the 21st IAEA Fusion Energy Conference Chengdu, China

October 16-21, 2006

Carbon deposition studies on the DIII-D Tokamak

Toroidally Symmetric ¹³CH₄ inection

- Both L- and H-mode plasmas
- Tiles removed at end of run and analyzed with two different NRA analysis techniques

Experimental Method

L-mode Results

H-mode Plasmas

Recent Experiments Suggests Tritium Uptake in Carbon Facing Surfaces May be Controllable

Conclusions

- These experiments simulate transport of carbon entering the SOL in the main chamber
- Highest concentration of carbon deposition is in the divertor, localized near the inner strike point
- · Carbon transport from upper crown to inner divertor by SOL flows of 20 km/s
- We can account for ~30-40% of the injected carbon in the divertor, about 10% at the injection region, and measurements of a few tiles in the main chamber suggest the remaining may be in a low-level deposit.
- Hydrocarbon breakup does not result in sufficient radial penetration to explain the profile at the plate - radial shift needed. Ad hoc flow of M~0.4 imposed in OEDGE modeling.
- Removal: Oxygen bake experiments are in progress, if promising, these could be carried out in DIII-D at the end of the next campaign.