Maintaining the Quasi-steady State Central Current Density Profile in Hybrid Discharges

by M.S. Chu*

for D.P. Brennan,[†] V.S. Chan,* M. Choi,* R.J. Jayakumar,[‡] L.L. Lao,* R. Nazikian,[¶] P.A. Politzer,* H.E. St. John,* A.D. Turnbull,* M.A. Van Zeeland,* R.B. White,[¶]

*General Atomics, San Diego, California [†]Univeristy of Tulsa, Tulsa, Oklahoma [‡]Lawrence Livermore National Laboratory, Livermore, California [¶]Princeton Plasma Physics Laboratory, Princeton, New Jersey

Presented at the 21st IAEA Fusion Energy Conference Chengdu, China

October 16-21, 2006

The Hybrid Scenario is an Attractive Option for ITER Operation

- Good confinement, nearly steady state
- Projected ITER performance at or above Q_{fusion}=10
- Robustly achievable over wide range of discharge parameters
- Compatible with sustained ignition scenario in ITER
- Can operate near the high β stability limit
- Reduced or eliminated occurrence of sawtooth

Hybrid Discharge Parameters

	DIII-D	ITER
l _p	1.2 MA	13.9 MA
B _T	1.1-1.9 T	5.3 T
R	1.75 m	6.2 m
q ₉₅	2.8-4.7	3.2
β _N	2.6-3.3	2.8
Н _{89р}	2.3-2.7	2.4
a	0.6 m	2.0 m
Q	N/A	12.9
T _{dur}	9.5 s	1500 s

Wade Nuclear Fusion 2005

NTM-MHD Mode is Key to Maintaining $q_0 \ge 1$ and Avoiding Sawteeth

- In DIII-D hybrids, rotating 3/2 or 4/3 NTM islands observed.
- Magnetic islands prevent development of sawteeth $q_0 \sim 1 + \epsilon$
- There is a current deficit possibility of negative current drive inside neoclassical island surface

Explore the Relation of NTM Island and Current Deficit

Outline

- Rotating island provides rotating magnetic perturbation and acts as antenna, emitting Alfvén waves into the surrounding plasma
- Particle drifts due to Alfvén waves produce charge separation and effectively drive counter current
 - Polarization drift could give rise to mode conversion
 - Curvature drift produces side band electric fields
- The wave can scatter NBI ions and reduce efficiency of NBI current drive

Rotating Magnetic Island Emits Alfvén Wave and Redistributes Fast Ions

- Alfvén waves drive current through modification of plasma drifts and excitation of E₁
 - Polarization drift and subsequent mode conversion to kinetic Alfven wave(kAW) excites E_{\parallel}
 - Magnetic curvature drift causes charge accumulation and drives E_{\parallel}
- Magnetic field perturbation from NTM island can redistribute density of energetic ions and reduce NBI central current drive

Current Drive by Alfvén Wave Is Strong Candidate to Explain Counter Current Drive

Current Drive by Alfvén Wave Is Strong Candidate to Explain Counter Current Drive

Established F-K Current Drive Theory Requires Parallel Electric Field to Drive Current

Perpendicular Electric Field Excites Parallel Electric Field through Particle Drifts

• Kinetic theory determines electron and ion density responses to perturbing electric fields

Electric field
$$\Rightarrow \vec{E} = -\vec{\nabla}_{\parallel} \psi - \vec{\nabla}_{\perp} \phi$$

Parallel potential
Quasineutrality condition then determines the relationship
between the electric fields,

$$\sum_{s} \frac{T_{e}}{T_{s}} \left[1 + \varsigma_{s} Z(\varsigma_{s}^{0}) \right] \left(1 - \frac{\vec{\omega}_{s}^{*}}{\omega_{3/2}^{i}} \right) \psi = -\sum_{s} \frac{T_{e} Z(\varsigma_{s}^{0})}{T_{s} \sqrt{2} k_{\parallel} v_{ts}} \left[\omega_{3/2}^{i} \rho_{s}^{2} \nabla_{\perp}^{2} + \left\langle \omega_{D}^{s} \right\rangle \right] \left(1 - \frac{\vec{\omega}_{s}^{*}}{\omega_{3/2}^{i}} \right) \phi$$
curvature

 $\omega_{3/2}^{i}(r)$ is rotation frequency of 3/2 island w.r.t. local thermal ions

Polarization drift FLR

drift

Total Alfvén Wave Driven Current Depends on Details of Electron and Ion Dynamics

$$J = J_{MHD} f_{\perp} f_{\parallel} \qquad \qquad J_{MHD} = \frac{\sqrt{2}\pi^{3/2} \varepsilon_0^2}{e \ln \Lambda} \left[\frac{\omega_{3/2}^e (\omega_{3/2}^i)^2 B^2 \xi_{\psi}^2}{k_{\perp}^2} \right]$$

Electron dynamics determines f_{\parallel} , ion dynamics determines f_{\perp}

Changing the wave speed relative to the electron thermal speed does not grossly modify the current drive efficiency so long as x_a is less than 3

Polarization Drift Due to Alfvén Wave Contributes to Current Drive

Without Mode Conversion or Sideband Coupling Total Driven Current is Small = 0.3 - 3.0 kA

• Polarization drift induced $f_{\perp} = f_{\perp 1}$

$$f_{\perp 1} = \rho_i^4 \left(\frac{T_e}{T_i} k_{\perp}^2 (1 - \frac{\omega_i^*}{\omega_{3/2}^i}) \right)^2$$

 Estimate based on typical DIII-D hybrid discharge parameters

 $q = q_0 + (q_{3/2} - q_0)\bar{r}^2 \qquad \omega_{3/2} = 1.05 \cdot 10^5 / s$ $\bar{r} = r / r_{3/2} \qquad \rho_i = 4.2 \cdot 10^{-3} m$

$$r_{3/2} = 0.3 m$$

• Assume central current drive region to cover only 0.10 m radius

$$\xi_{\psi} = .1 \ m, \quad J_{MHD} = 3.56 \cdot 10^7 A/m^2, \quad f_{\parallel} = 13,$$

 $f_{\perp} = 1.5 \bullet 10^{-5}$, Area = .044 m^2 , $I = Area \bullet J = .3kA$

Mode Conversion to KAW Can Amplify Driven Current

Mode Conversion to Kinetic Alfvén Wave Facilitated by Polarization Drift (FLR Effect)

Mode conversion greatly shortens perpendicular wave length and increases $f_{\perp 1}$

Total Driven Current Large at Resonances Due to Large Amplification Factor

- Normalized to $\xi_{2/2} = 1 \ cm$ at $r_{3/2}$
- Large current drive equilibria are associated with special solutions of the mode conversion equation which are the KAW eigenstates!!

Magnetic Curvature Drift Produces Sideband Electric Fields and Drives Current Effectively

Magnetic Curvature Drift due to Alfvén Wave Induces Electrostatic Sidebands

$$\psi_{\pm} = i \left[\frac{\sum_{s} \frac{1}{e_{s} BR} \left(1 - \frac{\omega_{s}^{*}}{\omega_{Is}^{i}} \right) \frac{1}{\sqrt{2}k_{\parallel\pm}v_{ts}} Z(\varsigma_{s\pm}) \left(\frac{m \pm 1}{r} \phi \mp \frac{\partial \phi}{\partial r} \right)}{\sum_{s} \frac{1}{T_{s}} \left[1 + \varsigma_{s\pm} Z(\varsigma_{s\pm}) \right] \left(1 - \frac{\omega_{s\pm}^{*}}{\omega_{Is}^{i}} \right)} \right]} \right]$$
Induced
parallel potential
$$f_{\perp 2} = \left\langle \omega_{D}^{i} \right\rangle^{2} \left(\frac{T_{e}}{T_{i}\omega_{3/2}^{i}} (1 - \frac{\omega_{i}^{*}}{\omega_{3/2}^{i}}) \right)^{2}$$

- + upper sideband, lower sideband Scales with as $\langle \omega_D^i \rangle^2$ or $(\rho/R)^2$,
- purely toroidal effect

Electrostatic Sidebands Due to Magnetic Curvature Drift Drive Significant Amount of Current

- Purely toroidal effect
- Current driven mainly by lower sideband

Magnetic Perturbation Due to NTM Island Modifies Distribution of NBI Current Drive

ORBIT Code Results Show Energetic Particle Density Modified Moderately by NTM Island

- New equilibrium reached within a few particle transit times
- Independent of energetic particles energy
- Account for 10%-20% of missing current

Discussion: Possible Tests of Theory and Extensions

Mechanism	Variables	Possible observations
KAW mode conversion current drive	 Rotation shear of island w.r.t. central plasma q(0) ~1 	 More current deficit if rotation is higher a) low q(0) less accessible b) less current deficit if q(0) higher c) evolution path to low q(0) has intermittent hesitation
curvature drift current drive	 rotation shear of island w.r.t central plasma q(0) ~ 1 generating A 	 Same as above a) b) Same as above less effective at larger A
energetic particle redistribution	Excites other mode(s) (TAEs, ELMs?) to work synergistically with NTM	 Current deficit independent of plasma rotation Broadening of energetic particle density profile

Conclusion: Magnetic Curvature Drift and KAW Mode Conversion Can Explain Observed Current Deficit

Three mechanisms for driving negative current by the rotating NTM are investigated:

- Polarization drift gives rise to mode conversion which effectively drives counter current
- Magnetic curvature drift produces sideband electric fields which effectively drives counter current
- The wave scatters NBI ions and reduces efficiency of NBI current drive to account for 10-20% of negative current

