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Outline

Physics of ELMs and Pedestal Constraints

• The Peeling-Ballooning Model and ELITE

– Successfully explains observed ELM onset and pedestal constraints

• Nonlinear Dynamics of ELMs

– Relaxation theory for peeling modes: small variable ELMs

– Theory of nonlinear ballooning modes: explosive filaments

– Direct 3D nonlinear simulation results: bursts of filaments

– Proposals for dynamics of full ELM crash, and particle & energy losses

Physics of ELM-free Discharges

• Quiescent H-Mode (QH) Theory and Observation

– QH Theory explains observed density, rotation, mode structure

– Application to ELM-suppressed RMP discharges
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The Peeling-Ballooning Model: Extensive
Validation against Experiment

• Pedestal Height and ELM heat impulses key issues for tokamaks/ITER

– Peeling-Ballooning model developed to explain ELM onset and pedestal constraints

• ELMs caused by intermediate wavelength (n~3-30) MHD instabilities

– Both current and pressure gradient driven, non-local

– Complex dependencies on , shape etc. due to bootstrap current and “2nd stability”

• ELITE code developed to efficiently evaluate P-B stability, compare to observation

– Extensively benchmarked against other MHD codes, includes non-locality, rotation

– >100 successful comparisons with observation, value and parametric dependence

MHD physics, taking into account diamagnetic effects, does a remarkably good job accounting for
(T1&T2) ELM onset and observed pedestal constraints

[P.B. Snyder, H.R. Wilson, et al., Phys. Plasmas 9 (2002) 2037, Phys. Plasmas 9 (2002) 1277 &  Nucl. Fusion 44 (2004) 320.]

ELITE, n=18 mode structure
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Nonlinear ELM Dynamics
- Relaxation theory for peeling modes [TH4/1Rb]



PB Snyder IAEA06

j(r)

r

Pre-ELM current profile

Post-ELM current profile

Post-ELM skin currents

• Toroidal peeling mode initiates an edge Taylor relaxation 
• Flattening of the current further destabilises peeling
                                         BUT
• Formation of a negative edge skin current is stabilising
• The balance between the two predicts an annular width

C. Gimblett et al., Phys. Rev. Lett. 96, 035006 (2006) 

The Peeling Mode/Relaxation ELM Model
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Model predictions
for collisional MAST
edge plasma 
•  deterministic scatter
•  initial profile dependence
to be examined

• Predicted ELM energy loss comparable to small, high collisionality ELMs

-A collisionality dependence may enter through the bootstrap current

A. Kirk et al., PPCF 46, A187 (2004).

Relaxation Model: ELM Width Predictions Plus

Critical Pressure Gradient Gives Energy Loss
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Nonlinear ELM Dynamics

-Theory of nonlinear ballooning modes [TH4/1Rb]
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• Leading order provides variation of displacement, , along field line:

– standard linear ballooning equation, with solution H( , )  ( <<1)

• The variation across field lines and the time dependence is determined by

a nonlinear equation for the amplitude, F:
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In the early nonlinear evolution of the ballooning mode, 

the ideal MHD equations can be reduced analytically:

Derivation of the Nonlinear Ballooning Theory

H.R. Wilson and S.C. Cowley, Phys. Rev. Lett. 92 (2004) 175006.
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• In nonlinear regime, balance quadratic nonlinearity with inertia (left hand side)

• Balance quadratic and cubic nonlinearities:

• Combine with slow variation along field line

 Filamentary structure erupts from the surface

 Coefficient C2 determines direction of filament propagation

• Highly challenging calculation, two length scale expansions + 

expansion about a JET-like equilibrium surface
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• We can scan pressure gradient and current density on the reference flux

surface to map out
1. The marginal ballooning stability boundary (calculation only accurate near here)

2. The contour C2=0, separating explosive and implosive behaviour

• The filaments explode outward if there is sufficient current density

– At lower current density, the filaments “implode” towards the core

• More work is required to understand the impact of non-ideal effects
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Nonlinear ELM Dynamics

- Direct 3D nonlinear simulation results [TH4/1Ra]
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Direct Numerical Simulation of Nonlinear Peeling-
Ballooning Finds Radially Propagating Filaments

P.B. Snyder et al, Phys. Plasmas 12 056115 (2005).

• Nonlinear: 3D BOUT simulations (EM two-fluid), include equilibrium scale MHD drives
as well as small scale diamagnetic terms in collisional limit

• Expected P-B linear growth and structure in early phase, followed by explosive
burst of one or many filaments into the SOL

– Successful comparisons of structure, radial velocity to observations
• Nonlinear ELM simulations and theory predicted filaments before fast camera observations

– Leads to two-prong model of ELM losses (conduits and barrier collapse)

                [P.B. Snyder, Phys Plasmas 2005, H.R. Wilson, PRL 2004]

• Picture developing to explain ELM onset and dynamics in the usual moderate to
high density ELMing regime
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Physics of ELM-free Regimes
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QH Modes Exist at Low Density, High Rotation

• Quiescent H-mode (QH): ELM-free regime seen on multiple machines, wide range
of parameters, usually with saturated edge mode (EHO)

– Operation generally requires low density and strong counter rotation in the
pedestal region

• The pedestal current is dominated
by bootstrap current
– Roughly proportional to p’

– Decreases with collisionality

• Lower density means more current
at a given p’
   ( *~ne

3 at given p)

– Moderate to high density discharges
limited by P-B or ballooning modes

– Very low density discharges may hit
kink/peeling boundary

Effect of Low Density
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QH Modes Exist at Low Density, High Rotation

• Quiescent H-mode (QH): ELM-free regime seen on multiple machines, wide range
of parameters, usually with saturated edge mode (EHO)

– Operation generally requires low density and strong counter rotation in the
pedestal region

• The pedestal current is dominated
by bootstrap current
– Roughly proportional to p’

– Decreases with collisionality

• Lower density means more current
at a given p’
   ( *~ne

3 at given p)

– Moderate to high density discharges
limited by P-B or ballooning modes

– Very low density discharges may hit
kink/peeling boundary

Effect of Low Density

Theory: QH Mode exists in Low-n

Kink/Peeling Limited Regime
-Allows quantitative density predictions

-Density limit varies with triangularity
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Observation: QH Discharges Exist Near
Kink/Peeling Boundary

• Stability Studies Perturbing around reconstructed QH discharges on DIII-D

• Moderate Shaping (left):  QH operating point near kink/peeling bound, low density
nped~1.5 1013 cm-3

• Strong Shaping (right): QH operating point near kink/peeling bound, higher density
QH operation possible, nped~3 1013 cm-3

– Good quantitative agreement with predictions, confirmed by 2006 experiments

• Observed EHO during QH mode has poloidal magnetic signal qualitatively
consistent with low-n kink/peeling mode

Weak
Shaping

Strong
Shaping
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ITER Model Shows QH Regime May be
Accessible at Low Density

• ITER base case,

R = 6.2 m, a = 2 m,

Bt = 5.3T, Ip = 15 MA

• Reference density
<ne> = 10.1 1019cm-3,

neped~7 1019cm-3

– High n ballooning

limited at Ref density

• QH region for

neped<~4 1019cm-3

– Worth exploring low or

peaked density

operation
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Rotation Plays an Important Role in QH Mode

• Flow stabilizes “edge localized RWM” (and hign-n ballooning modes)

– Allows plasma to reach ideal boundary, triggering rotating low-n mode

• Limiting modes are rotationally destabilized

– As mode grows and damps rotation, it is stabilized (unlike ELM)

• Rotation requirements quantified in DIII-D experiments

– Density rises then ELMs return when net beam torque is reduced

n=5
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Theory for QH Mode Mechanism

• QH Mode exists in regime where low-n kink/peeling is limiting, due to
low density, high bootstrap current

• Strong flow shear stabilizes “ELRWM” branch, leaves rotationally
destabilized low-n “ideal” (with kinetic and diamagnetic corrections)
rotating kink/peeling mode most unstable

– This rotating mode is postulated to be the EHO

• As EHO grows to significant amplitude it couples to wall, damping
rotation and damping its own drive

– Presence of the mode breaks axisymmetry, spreads strike point
and stochasticizes surface -> more current/particle transport and
more efficient pumping, allowing steady state profiles

• EHO saturates at finite amplitude, resulting in near steady-state in all
key transport channels in the pedestal region

Predicted density requirement agrees quantitatively with experiment.  Predicted

mode structure, rotation, and wall coupling requirements agree qualitatively
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RMP ELM-free Discharges in Similar Regime to QH

• n=3 Resonant Magnetic
Perturbations used to suppress
ELMs in low density discharges

• ELM-suppressed shots in stable
region, nearest kink/peeling
boundary

– Increasing density causes ELMs to
return

• Propose that RMP plays the role
of the EHO here
– Particle, Te, j, rotation steady state

• While EHO grows only to
amplitude needed for steady
state, RMP amplitude can be
controlled
– Able to operate a factor of 2

below stability boundaries
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Summary

• Peeling-ballooning model has achieved significant success in explaining
pedestal constraints, ELM onset and a number of ELM characteristics

• Nonlinear dynamics studied with a variety of approaches
– Relaxation theory applied to peeling modes: small, variable ELMs

– Nonlinear ballooning theory: Explosive filaments, critical current density

– Direct 3D electromagnetic, two-fluid nonlinear simulations (BOUT)
• Expected peeling-ballooning behavior in linear phase followed by rapid burst of one or many filaments

– Successful comparisons with observations

Two prong model (conduits and barrier collapse) for ELM losses

• QH Theory: ELM-free QH exists in low-n kink/peeling limited regime
– Successfully predicts observed density requirements for QH mode: increase with

stronger shaping (ITER study finds QH for neped<~4 1019 m-3)

– Flow shear stabilizes ELRWM (and higher n), leaves low-n rotationally destabilized
kink/peeling mode most unstable (EHO)

– Saturates by damping rotation and providing current/particle transport

• Low density RMP ELM-free discharges in similar regime to QH

– RMP plays the role of the EHO, but actively controlled
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