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Outline

Physics of ELMs and Pedestal Constraints

• The Peeling-Ballooning Model and ELITE

– Successfully explains observed ELM onset and pedestal constraints

– Impact of sheared toroidal flow

• Nonlinear Dynamics of ELMs

– Direct 3D nonlinear simulation results: bursts of filaments

– Proposals for dynamics of full ELM crash, and particle & energy losses

Physics of ELM-free Discharges

• Quiescent H-Mode (QH) Theory and Observation

– QH Theory explains observed density, rotation, mode structure

– Application to ELM-suppressed RMP discharges
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The Peeling-Ballooning Model Predicts ELM
Onset, Pedestal Constraints

• Pedestal Height and ELM heat impulses key issues for tokamaks/ITER

– Peeling-Ballooning model developed to explain ELM onset and pedestal constraints

• ELMs caused by intermediate wavelength (n~3-30) MHD instabilities

– Both current and pressure gradient driven, non-local

– Complex dependencies on , shape etc. due to bootstrap current and “2nd stability”

• ELITE code developed to efficiently evaluate P-B stability, compare to observation

– Extensively benchmarked against other MHD codes, includes non-locality, rotation

[P.B. Snyder, H.R. Wilson, et al., Phys. Plasmas 9 (2002) 2037, Phys. Plasmas 9 (2002) 1277 &  Nucl. Fusion 44 (2004) 320.]

ELITE, n=18 mode structure
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The Peeling-Ballooning Model:
Code Verification

• ELITE code developed to efficiently treat P-B
stability across wide spectrum, realistic
geometry [H.R. Wilson, P.B. Snyder et al Phys Plasmas 9 (2002) 1277;
P.B. Snyder, H.R. Wilson, et al., Phys. Plasmas 9 (2002) 2037]

– Extended ballooning expansion + peeling

– Validated against GATO, MISHKA, CASTOR, MARS,
MARG2D, BAL-MSC

• infinite-n ballooning only valid at very high-n

• Non-locality and kink terms essential

– Validated with toroidal flow (MARS, CASTOR)
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The Peeling-Ballooning Model: Extensive
Validation against Experiment

• Successful comparisons to multiple tokamaks both directly and in database studies

– Over 100 discharges directly studied with ELITE

– Onset of Type I ELMs corresponds to crossing P-B threshold

– MHD physics, taking into account diamagnetic effects, does a remarkably good job
accounting for ELM onset and observed pedestal constraints

– Power scaling understood via Shafranov shift, dynamic effects

– Predictions for ITER pedestal height (as function of width)
[P.B. Snyder, H.R. Wilson, et al., Phys. Plasmas 9 (2002) 2037; D. Mossessian, P.B. Snyder et al., Phys. Plasmas 10 (2003) 1720; P.B. Snyder, H.R.
Wilson, et al., Nucl. Fusion 44 (2004) 320.]

See also Leonard EX/P8-3
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• Eigenvalue formulation with rotation and compression derived and

included in ELITE

– Sheared rotation strongly damps high n

– weaker impact intermediate n, can be destabilizing at low n

– Small change in instability threshold, limiting mode moves to lower n

– radial narrowing of mode structure

Effect of Strong Toroidal Flow Shear in the Edge
Region
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Calculated Mode Rotation Agrees with
Observation during ELM

• Measured rotation profile flattens at ELM onset

– Value matches eigenfrequency of most unstable mode

• Suggests “locking” of pedestal region to the mode during initial
phase of ELM crash  edge barrier collapse

Predicted Mode

Rotation

Calculated Structure of Most Unstable Mode

J Boedo, PoP05

K Burrell and DIID team
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Nonlinear ELM Dynamics
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Direct Numerical Simulation of Nonlinear Peeling-
Ballooning Finds Radially Propagating Filaments

P.B. Snyder et al, Phys. Plasmas 12 056115 (2005).

• Nonlinear: 3D BOUT simulations (EM two-fluid), include equilibrium scale MHD drives
as well as small scale diamagnetic terms in collisional limit

• Expected P-B linear growth and structure in early phase, followed by explosive
burst of one or many filaments into the SOL

– Successful comparisons of structure, radial velocity to observations
• Nonlinear ELM simulations and theory predicted filaments before fast camera observations

– Leads to two-prong model of ELM losses (conduits and barrier collapse)

                [P.B. Snyder, Phys Plasmas 2005, H.R. Wilson, PRL 2004]

• Picture developing to explain ELM onset and dynamics in the usual moderate to
high density ELMing regime
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Simulations Compared to DIII-D Fast Camera
Images of ELMs

• Use reconstructed equilibrium just before fast
camera image of ELM

– Most unstable mode n~18

• Nonlinear simulations find good agreement in
filamentary structure, wavelength, and
qualitative radial propagation speed

– Filaments were predicted by simulation and
theory before fast camera images

ELITE, n=18

BOUT, nonlinear burst phase

Fast CIII Image, DIII-D 119449

M. Fenstermacher, DIII-D/LLNL
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Physics of ELM-free Regimes
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QH Modes Exist at Low Density, High Rotation

• Quiescent H-mode (QH): ELM-free regime seen on multiple machines, wide range
of parameters, usually with saturated edge mode (EHO)

– operation generally requires low density and strong counter rotation in the
pedestal region

• The pedestal current is dominated
by bootstrap current
– Roughly proportional to p’

– Decreases with collisionality

• Lower density means more current
at a given p’
   ( *~ne

3 at given p)

– Moderate to high density discharges
limited by P-B or ballooning modes

– Very low density discharges may hit
kink/peeling boundary

Effect of Low Density
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Theory: QH Mode Exists in Low-n Kink/Peeling
Limited Regime

• Can quantitatively predict density range over which QH operation possible

• Weak Shaping (left):  QH Regime accessible only at very low density (nped<~1.5 1013

cm-3)

• Stronger Shaping (right): QH regime can be accessed at higher density (here up to
nped<~3 1013 cm-3), more robust

• Low-n modes experience some wall stabilization, despite localization
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Observation: QH Discharges Exist Near
Kink/Peeling Boundary

• Stability Studies Perturbing around reconstructed QH Discharges on DIII-D

• Moderate Shaping (left):  QH operating point near kink/peeling bound, low density
nped~1.5 1013 cm-3

• Strong Shaping (right): QH operating point near kink/peeling bound, higher density
QH operation possible, nped~3 1013 cm-3

– Good quantitative agreement with predictions, confirmed by 2006 expts

• Observed EHO during QH mode has poloidal magnetic signal qualitatively
consistent with low-n kink/peeling mode

Weak
Shaping

Strong
Shaping
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ITER Model Shows QH Regime May be
Accessible at Low Density

• ITER base case,
R=6.2m, a=2m,
Bt=5.3T, Ip=15MA

• Reference density
<ne>=10.1 1019cm-3,
neped~7 1019cm-3

– High n ballooning
limited at Ref density

• QH region for
neped<~4 1019cm-3

– Worth exploring low
or peaked density
operation
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Rotation Plays an Important Role in QH
Mode

• Flow stabilizes “edge localized RWM” (and hign-n ballooning modes)

– Allows plasma to reach ideal boundary, triggering rotating low-n mode

• Limiting modes are rotationally destabilized

– As mode grows and damps rotation, it is stabilized (unlike ELM)

• Rotation requirements quantified in DIII-D experiments

– Density rises then ELMs return when net beam torque is reduced

n=5
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Theory for QH Mode Mechanism

• QH Mode exists in regime where low-n kink/peeling is limiting, due to
low density, high bootstrap current

• Strong flow shear stabilizes “ELRWM” branch, leaves rotationally
destabilized low-n “ideal” (with kinetic and diamagnetic corrections)
rotating kink/peeling mode most unstable

– This rotating mode is postulated to be the EHO

• As EHO grows to significant amplitude it couples to wall, damping
rotation and damping its own drive

– Presence of the mode breaks axisymmetry, spreads strike point
and stochasticizes surface -> more current/particle transport and
more efficient pumping, allowing steady state profiles

• EHO saturates at finite amplitude, resulting in near steady-state in all
key transport channels in the pedestal region

Predicted density requirement agrees quantitatively with experiment.  Predicted

mode structure, rotation, and wall coupling requirements agree qualitatively
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RMP ELM-free Discharges in Similar Regime to QH

• n=3 Resonant Magnetic
Perturbations used to suppress
ELMs in low density discharges

• ELM-suppressed shots in stable
region, nearest kink/peeling
boundary

– Increasing density causes ELMs to
return

• Propose that RMP plays the role
of the EHO here
– Particle, Te, j, rotation steady state

• While EHO grows only to
amplitude needed for steady
state, RMP amplitude can be
controlled
– Able to operate a factor of 2

below stability boundaries
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Summary
• Peeling-ballooning model has achieved significant success in explaining pedestal

constraints, ELM onset and a number of ELM characteristics

• Toroidal flow shear stabilizing at high-n, study suggests edge flow locks to mode

• Dynamics studied via direct, 3D nonlinear two-fluid ELM simulations (BOUT)

– Expected peeling-ballooning behavior in linear phase followed by rapid burst of one
or many filaments

– Successful comparisons with observations

Two prong model (conduits and barrier collapse) for ELM losses

• QH Theory: ELM-free QH exists in low-n kink/peeling limited regime

– Successfully predicts observed density requirements for QH mode: increase with
stronger shaping

• ITER study suggests QH for neped<~4 1019 m-3

– Flow shear stabilizes ELRWM (and higher n), leaves low-n rotationally destabilized
kink/peeling mode most unstable (EHO)

– Saturates by damping rotation and providing current/particle transport

• Low density RMP ELM free discharges in similar regime to QH

– RMP plays the role of the EHO, but actively controlled
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