Feedback Control of the Safety Factor Profile in DIII-D Advanced Tokamak Discharges

by J.R. Ferron*

for

V. Basiuk,[†] T.A. Casper,[‡] E.J. Doyle,[¶] Q. Gao,[§]
P. Gohil,^{*} C.M. Greenfield,^{*} F. Imbeaux,[†] J. Lohr,^{*}
T.C. Luce,^{*} M.A. Makowski,[‡] D. Mazon,[†] M. Murakami,[#]
Y. Ou,[△] J.-M. Park,[∞] C.C. Petty,^{*} P.A. Politzer,^{*} T.L. Rhodes,[¶]
M. Schneider,[†] E. Schuster,[△] M.A. Van Zeeland,^{*}
M.R. Wade,^{*} and A. Wang[¶]

*General Atomics, San Diego, California.
 [†]Association Euratom-CEA, CEA-Cadarache, France.
 [‡]Lawrence Livermore National Laboratory, Livermore, California.
 [¶]University of California-Los Angeles, Los Angeles, California.
 §Southwest Institute of Physics, Chengdu, China.
 [#]Oak Ridge National Laboratory, Oak Ridge, Tennessee.
 ^ΔLehigh University, Bethlehem, Pennsylvania.
 [∞]National Fusion Research Center, Dae Jeon, Korea.

Presented at the 21st IAEA Fusion Energy Conference Chengdu, China

October 16-21, 2006

AT Discharge Goal: Create the Optimum q Profile During the Discharge Formation and Sustain it in Steady State

- 100% noninductive current at high β_N
- β_N feedback for reproducibility
- H-mode during the Ip ramp
- q profile target for high β phase:
 1.5 < q_{min} < 2.5
 q(0) q_{min} ≈ 0.5

Safety Factor Control Experiments on DIII–D Focus on Formation of Initial Current Profile for Advanced Tokamak Discharges

 Primary control knob for current profile evolution during plasma formation is conductivity (σ, or effectively T_e)

 $J = J_{ind} + J_{nonind} = \sigma E_{\parallel} + J_{BS} + J_{EC} + J_{NB} + \dots$

- Noninductive currents are small relative to inductive during current ramp (low β and low T_e)
- Electron heating is strong actuator for q(0) and q_{min} evolution during discharge formation
- Off-axis ECH and neutral beam heating are both effective as actuators for changing σ profile
 - 110 GHz long pulse gyrotrons with steerable mirrors inject ~2 MW
 - Neutral beams heat ions/electrons and drive co-current on axis
- During stationary phase of discharge, localized current drive is needed to control q profile

Open Loop Experiments Demonstrate the Modifications in the q Profile Evolution Resulting From Changes in T_e

- L-mode edge, constant
 P_{NB} = 2.6 MW
- T_e feedback control using ECH at ρ=0.4
- Effect is on q(0), not q_{min}, because of peaked T_e, σ profiles [ρ (q_{min}) ≈ 0.5]

Broad T_e Profile in H-mode Results in Higher q Values for Longer Duration

- H-mode, edge T_e pedestal
- Both q(0) and q_{min} increase with T_e because of broad σ profile
- σ outside radius of q_{min} is 2-4 times larger in H-mode than in L-mode

Off-axis Current Drive During the I_P Ramp is a Less Effective Actuator than Conductivity

- A comparison between off-axis co–ECCD and and counter–ECCD shows only small differences in q evolution
- H-mode edge
- Because of low T_e, the ECCD is small compared to the total current density
- Changes resulting from current drive are similar to discharge-to-discharge variations

Safety Factor Profile is Calculated in Real Time from a Complete Equilibrium Reconstruction

- Data from 26 internal poloidal field measurements from the MSE diagnostic are utilized in the real time EFIT algorithm
- A least squares fit solution to Grad-Shafranov equation is calculated matching the magnetics and MSE measurements
- Solution is consistent with force balance
- Correction for the effect of E_r on MSE
- Spline current profile parameterization for fitting negative central shear q profiles
- Safety factor profile calculation is typically available at 4–8 ms intervals

Closed-loop Control of q(0) Evolution Using Off-Axis ECH is Effective Until Power Saturates

- L-mode
- Control works during current ramp; insufficient EC power to maintain target in flattop
- Proportional gain only (probably should be higher)
- Two different targets reproduce good (red) and degraded (blue) breakdown conditions

q_{min} has been Controlled to High Values for Long Duration Using Neutral Beam Heating in H-mode

- Control works in ramp up and flattop
- Proportional gain only
- Large power demand on NBI can drive the plasma to β limit
- Control of q_{min} and q(0) - q_{min} probably not possible with only NBI

Simulations of the Current Profile Evolution During AT Discharge Formation are Used to Test the Physics Models

 Transport codes reproduce changes in current profile evolution achieved by varying conductivity (σ)

 $- J = J_{ind} + J_{NI} = \sigma E + J_{BS} + J_{EC} + J_{NB}$

- Inductive current dominates during discharge formation
- Models of B_p diffusion, J_{BS} and J_{NB} reproduce experiment in many cases
- Transport codes in use to develop and test feedback controllers

Transport Code is Used With Measured Density and Temperature Profiles to Predict the q Profile Evolution

- ONETWO used primarily, also CRONOS, TRANSP, CORSICA
- Starts with an initial current profile obtained by fitting magnetic and MSE data with EFIT
- Total plasma current versus time is specified
- Experimental values for comparison with simulations are obtained from EFIT equilibrium reconstructions using MSE data
 - J and q profiles
 - Electric field from $E = d\psi/dt$
 - $J_{IND} = \sigma E$ (σ from neoclassical model)

$$-$$
 J_{NI} = J - J_{IND}

q Evolution Predictions Reproduce the Dependence on T_e and the Choice of L or H-mode Observed in the Experiment

- **q profile evolves more slowly as T_e is increased** – Result of increase in σ
- Decay of q is slower in H-mode for comparable mid-radius T_e

The Noninductive Current Remains Relatively Low and Shows Little Change in Profile Shape as the q Profile Evolves

- I_{NI}/I_{total}<0.5: inductive current evolution dominates
 - But $J_{\mbox{\scriptsize NI}}$ is large enough to change q profile, particularly as $T_{\mbox{\scriptsize e}}$ increases

• Predicted profile of J_{NI} nearly constant in time

- No practical means to change the profile to change q

The Simulation Can Reproduce the Measured Time Evolution of the q Profile in L-mode Discharges with Low ${\rm f}_{\rm NI}$

- This example is the lowest T_e case where $f_{NI} = I_{NI}/I_{total}$ is the smallest.
- The two simulations bracket the experimental results

Electric Field at the Core and Boundary Show Reasonable Agreement Between Simulation and Experiment

- Rising E in core reflects relaxation of J_{IND} profile
- Predicted E (ρ = 1) above the measured value could indicate either the modeled I_{NI} or the modeled σ is too low

For many H-mode Discharges, Faster q Profile Evolution than Observed is Predicted by the Transport Code Models

Postulating that the Neutral Beam-Driven Current is Located Off-Axis Results in a Better Match to the Experiment

- Total NB-driven current is the same in both simulations
- Redistribution of fast ions by Alfvén eigenmodes could possibly result in an altered J_{NB} profile
 - See Heidbrink EX6-3

The CRONOS Code Successfully Models the Capability of the Real-Time Controller to Modify the Time Evolution of q_{min}

- P_{NB} = estimate + gain * (actual q_{min} target q_{min})
- Time evolution of $n_{e'}$, $T_{i'}$, Z_{eff} specified
- T_e profile calculated using an empirical electron heat diffusivity model
- Postulated J_{NB} profile is used

Summary: Feedback Control of the q Evolution is in Use to Form the Target q Profile for High β_{N} DIII-D AT Discharges

- Goal is to reliably produce the optimal q profile for sustainment in steady-state
- Closed loop feedback control of q evolution is effective with ECH or neutral beam heating
- Changes in σ used to modify the rate of relaxation of the current profile
- Transport code simulation in use for controller testing
- In some cases, the noninductive current is apparently located farther from the axis than predicted by the models

