Alfvén Instabilities in DIII-D

by W.W. Heidbrink[#]

for G.J. Kramer,[†] R. Nazikian,[†] M.A. Van Zeeland, M.E. Austin,[¶] H.L. Berk,^{*} K.H. Burrell,[◊] N.N. Gorelenkov,[†] Y. Luo,[#] G.R. McKee,[§] T.L. Rhodes,[‡] G. Wang,[‡] and the DIII-D Team

[#]University of California, Irvine, Irvine, California.
^{*}General Atomics, San Diego, California.
^{*}Institute for Fusion Studies, Austin, Texas.
[†]Princeton Plasma Physics Laboratory, Princeton, New Jersey.
[‡]University of California-Los Angeles, Los Angeles, California.
[¶]University of Texas, Austin, Texas.
[§]University of Wisconsin. Madison, Wisconsin.

Presented at the 21st IAEA Fusion Energy Conference Chengdu, China

Alfvén Modes are Usually Unstable in Advanced Tokamak (AT) Plasmas

In this talk...

- Reversed shear with early beam injection
- 80 keV Deuterium Co-injection
- Modest density → large beam beta to drive Alfven modes

•Qualitatively similar conditions in many plasmas →
 Alfven modes are common in DIII-D

Toroidicity-induced Alfvén Eigenmodes (TAE) & Reversed Shear Alfvén Eigenmodes (RSAE)

<u>Toroidicity-induced Alfven</u> <u>Eigenmodes (TAEs)</u>

- Global modes
- Frequency changes gradually
- <u>Reversed Shear Alfven</u> <u>Eigenmodes (RSAE)</u>
- Localized near q_{min}
- •Frequency sweeps upward as q_{min} decreases

Toroidal rotation also shifts frequencies ~ nf_{rot}

Theory: TAEs are Global, RSAEs are Localized

n=3 TAE

Linear eigenfunctions are calculated by the ideal MHD code NOVA

Global mode with many poloidal harmonics

Van Zeeland, PRL 97 (2006) 135001.

n=3 RSAE δT_{e} , f = 72 kHz

Localized mode with one poloidal harmonic

Sensitive Diagnostics Measure Fluctuations in n_e, T_e, and B

Signals Depend on the Mode Structure: RSAEs are Localized

Signals Depend on the Mode Structure: TAEs are Global

The Upgraded ECE Diagnostic Measures the Radial Eigenfunction

• RSAEs are localized at q_{min}

TAEs are globally extended

Van Zeeland, PRL 97 (2006) 135001.

The Mode Structure agrees with linear ideal MHD Theory

- -The MHD $\delta T_{\rm e}$ amplitude is scaled to match the ECE data
- No free parameters in the δn_e comparison

• The TAE data also agree well

Van Zeeland, PRL 97 (2006) 135001.

TIONAL FUSION FACILITY

SAN DIEGO

Alfvén Modes Degrade Fast-ion Confinement

• Volume-averaged neutron rate is below the classical TRANSP prediction during the strong Alfven activity

• Fast-ion D_{α} (FIDA) diagnostic measures the spectrum of fast ions with 5 cm spatial resolution^{*}

•FIDA "density" near ρ_{qmin} is reduced during the strong Alfven activity

*Heidbrink, PPCF 46 (2004) 1855; Luo, RSI 77 (2006) submitted.

The Fast-ion Deficit Correlates with Alfvén Activity

- •The strength of the Alfven activity tends to increase with beam power in similar
- •The discrepancy between the classical prediction and the data is largest when the Alfven modes are strong
- •The FIDA deficit is larger than the neutron deficit

*For this comparison, the FIDA density and neutron rate are normalized by their values at 2.0 s in the 1-source shot (when Alfven activity is undetectable).

The Fast-ion Density Profile is Flattened

• During the strong Alfven activity, the fast-ion density profile from FIDA is nearly flat

•The fast-ion profile inferred from the equilibrium^{*} is also very flat

•The classical profile computed by TRANSP peaks on axis

*The kinetic EFIT equilibrium uses MSE and magnetics data to compute the pressure profile. Subtraction of the thermal pressure yields the fast-ion pressure.

Fast-ion Transport Broadens the Profile of Neutral-Beam Driven Current

• The current diffuses more slowly than classically predicted

SAN DIEGO

- •Independent determinations of q_{min} from MSE-based equilibrium reconstructions and from the RSAE integer q crossings agree
- Apparently co-circulating fast ions that move to ρ ~ 0.5 broaden the NBCD profile.*

*Ferron, this conference; Wong, PRL 93 (2004) 085002; Wong, NF 45 (2005) 30.

Modes also Observed on the **Thermal-ion Gyroradius Scale**

Nazikian, PRL 96 (2006) 105006; Kramer, Phys. Pl. 13 (2006) 056104

Diagnostic Advances → Rigorous Tests of Alfvén Eigenmode Theory

Diagnostic Advances

Fluctuations: δT_e , δn_e , δB

Fast ions: FIDA, Neutrons, Pressure, Current

Conclusions

•TAE and RSAE mode structure agree with linear MHD

• Strong Radial Fast-ion Transport

• High n modes on thermal-ion scale

In Progress

 Compute fast-ion transport in validated wave fields and compare with FIDA profile

- Self-consistent nonlinear simulations
- Study excitation threshold of high n modes

Backup slides

Fast-ion D_{α} (FIDA) Diagnostic

• A type of Charge Exchange Recombination Spectroscopy

•Use vertical view to avoid bright interferences

• Exploit large Doppler shift (measure wings of line)

- Background subtraction usually dominates uncertainty
- Achieved resolution: ~ 5 cm,
- ~ 10 keV, 1 ms.

Heidbrink, PPCF 46 (2004) 1855; Luo, RSI (2006) submitted.

Theory of Alfvén Eigenmodes in Reverse Magnetic Shear Plasmas :RSAE

SAN DIEGO