A Comprehensive Theory Based Transport Model

By G.M. Staebler¹

for J.E. Kinsey², R.E. Waltz¹

¹General Atomics, San Diego ²Lehigh University

Presented at the 21st IAEA Fusion Energy Conference Chengdu, China

October 16-21, 2006

A Comprehensive Theory Based Transport Model

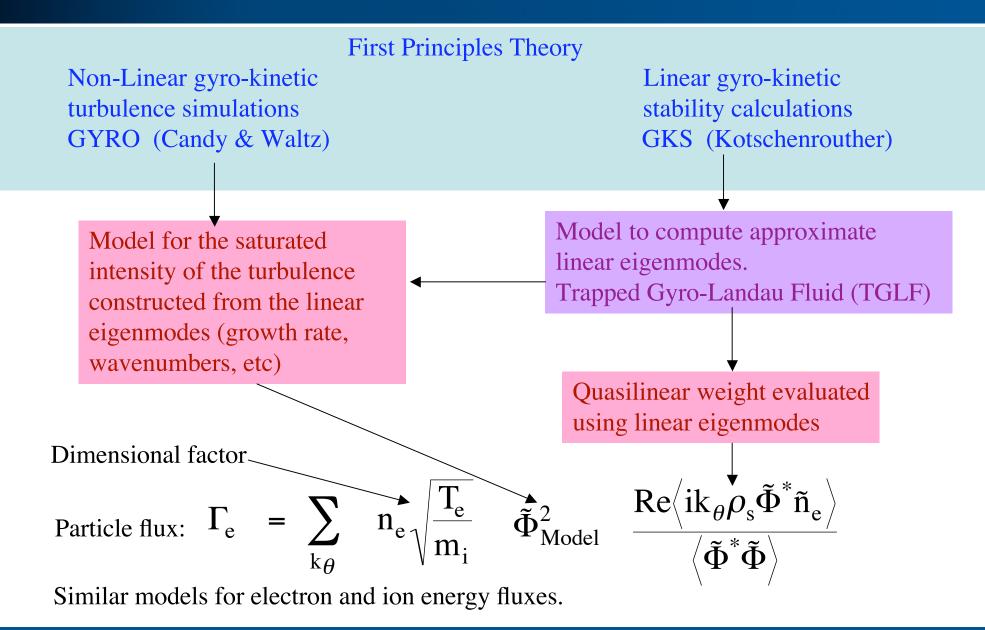
comprehensive physics: shaped magnetic geometry, electron-ion collisions, fully electromagnetic, dynamic electrons, ions and impurity ions

Theory based: model fit to first principles gyro-kinetic theory

A more accurate transport model with comprehensive physics was needed

- The GLF23 transport model (Waltz, Staebler et.al.,1997) has been used successfully worldwide to predict core temperature profiles in tokamaks.
- A new transport model has been developed using the same methodology as GLF23: the Trapped Gyro-Landau Fluid (TGLF) model.
 - TGLF has particularly improved the treatment of trapped particles compared to GLF23.
 - TGLF includes the physics missing from GLF23.
- The TGLF linear stability code is being used for fast analysis of experiments.
 - growth rates agree very well with gyro-kinetic linear stability codes.
 - 100X faster for linear stability analysis of experimental discharges.
- The TGLF quasilinear transport model is a better fit to nonlinear gyrokinetic turbulence simulations than GLF23.
 - 86 non-linear turbulence simulations over a wide range of parameters were used for the TGLF intensity model fit.

Anatomy of a quasilinear transport model



TGLF is a major upgrade from GLF23

TGLF

- TIM, ITG,TEM, ETG modes from a single set of equations
- Exact FLR integrals keep accuracy for high-k i.e. k_θρ_i>1
- Adaptive Hermite basis function solution method valid for the same range as the GK equations
- All trapped fractions
- Shaped geometry (Miller model)
- Fully electromagnetic $(\tilde{B}_{\perp}, \tilde{B}_{\parallel})$
- New electron-ion collision model fit to pitch angle scattering
- Transport model fit to 86 GYRO runs with kinetic electrons
- 15 moment equations per species
- 10-30 times slower than GLF23

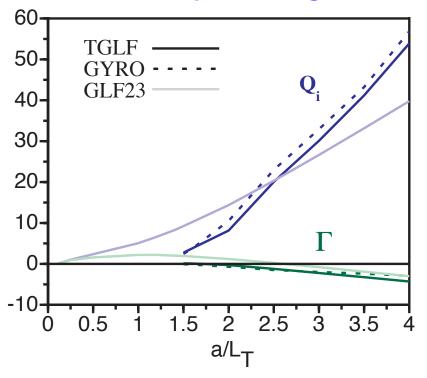
GLF23

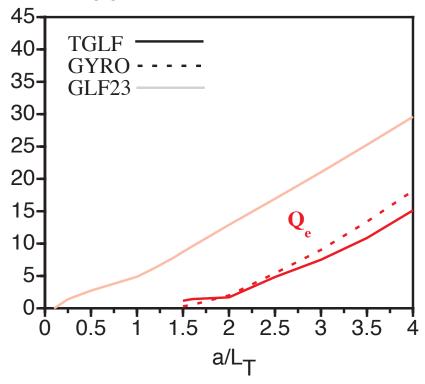
- Different equations for low-k (ITG,TEM) and high-k (ETG)
- FLR integrals used Pade approximation valid for low-k
- Parameterized single Gaussian trial wavefunction valid for a limited range of conditions
- Small trapped fraction required.
- Shifted circle (s-alpha) geometry
- Normally run electrostatic
- Inaccurate electron-ion collision model only for low-k equations
- Transport model fit to a few GLF non-linear turbulence runs
- 4 moment equations per species
- Fast enough for 1997 computers!

The new TGLF transport model is a more accurate fit to gyro-kinetic turbulence than GLF23

- TGLF fits GYRO well for all three channels.
- GLF23 electron energy flux is systematically high.
- GLF23 with trapped electrons misses critical temperature gradient.
- GLF23 was fit to this same scan with adiabatic electrons.

Temperature gradient scan with trapped electrons



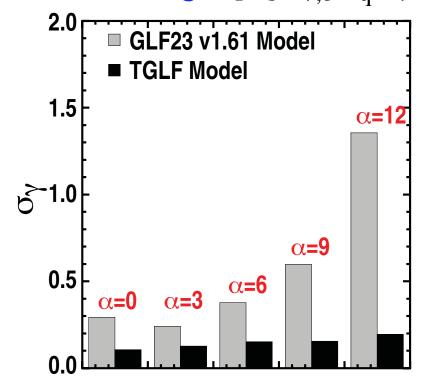


TGLF has a uniformly good accuracy over a wide range of plasma conditions

- Linear stability benchmarks in s-alpha geometry show that TGLF is an accurate approximation to gyrokinetic calculations with GKS.
- The average fractional deviation for the TGLF growth rate is 11.4% for the whole database of 1800 GKS runs.

$$\sigma_{\gamma} = \sqrt{\sum_{i} \left(\gamma_{i}^{TGLF} - \gamma_{i}^{GKS}\right)^{2}} / \sqrt{\sum_{i} \left(\gamma_{i}^{GKS}\right)^{2}}$$

Each bar is the fractional deviation for a set of 80 pts varying shear and safety factor about the PED point over the range $1 \le \hat{s} \le 7, 3 \le q \le 7$

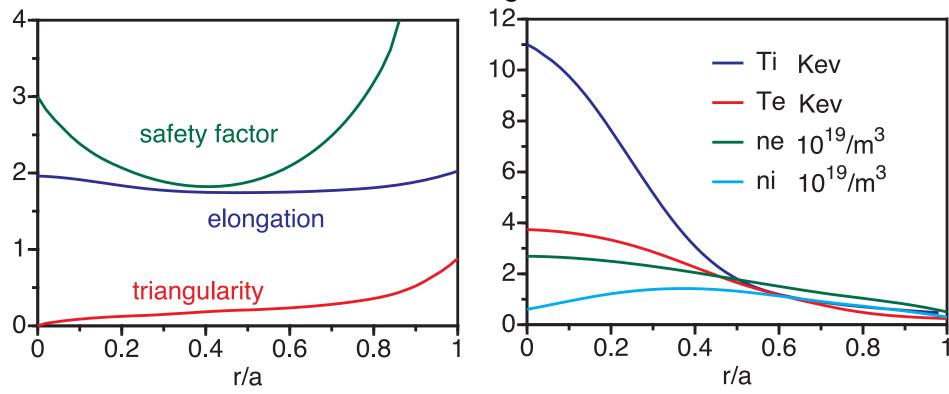


$$PED = \left(a/L_{n_e} = a/L_{n_i} = 3, \ a/L_{T_e} = a/L_{T_i} = 10, \ T_i/T_e = 1, \ q = 4, \ \hat{s} = 3, \ \alpha = 5, \ k_y = 0.3, \ r/a = 0.5, \ R/a = 3.0\right)$$

TGLF is now being used for linear stability analysis of experimental data

- As an illustration of the accuracy of TGLF with comprehensive physics, an analysis of a DIII-D NCS discharge will be made.
- The geometry and plasma profiles are shown below.
 - L. Lao et al. Phys. Plasmas 3 (1996) 1951.

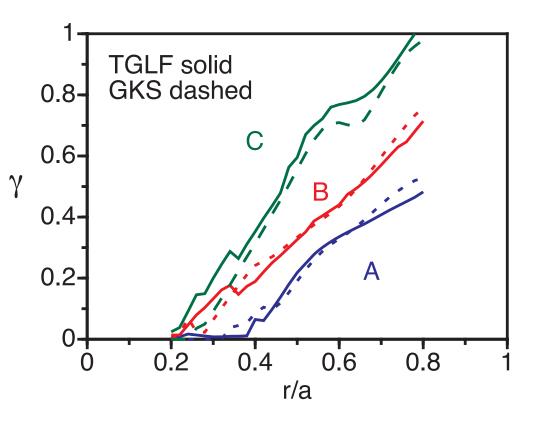
DIII-D NCS discharge 84736 at 1.3 sec



TGLF linear growth rates are accurate for real experimental conditions.

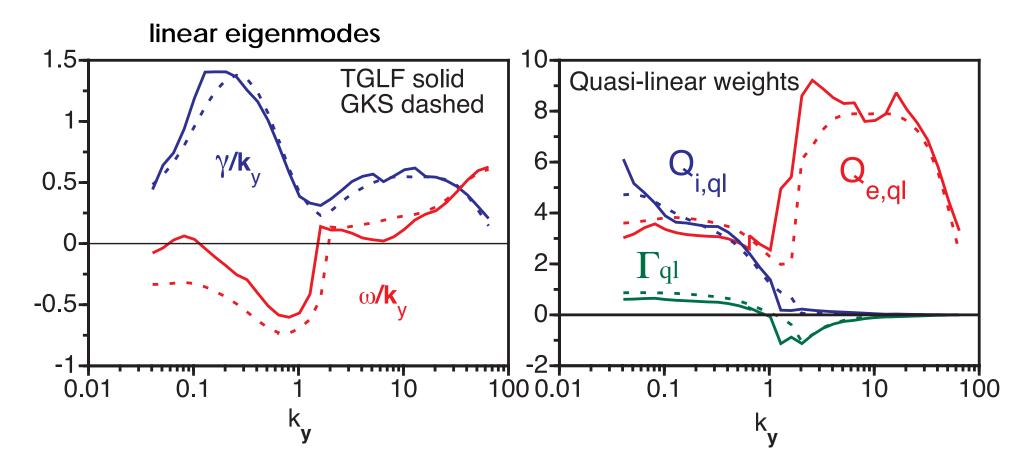
- The radial profile of the normalized linear growth rate for k_y=0.3 and three different physics settings is shown.
 - (A) comprehensive physics
 - (B) collisionless, electrostatic
 - (C) s-alpha geometry dillution, collisionless, electrostatic
- The TGLF code was 200X faster than GKS for (C)
 (2.4sec vs 8.9min)

DIII-D NCS discharge 84736 at 1.3sec



The full spectrum of drift wave eigenmodes can be computed with TGLF

 k-spectrum with comprehensive physics at r/a=0.7 for DIII-D NCS discharge 84736 at 1.3 sec.



TGLF flux model is fit to a large database of nonlinear gyro-kinetic turbulence simulations

The normalized TGLF fluxes are given by

$$\hat{Q}_i = c_{Q_i} \overline{\Phi}^2 Q_{i,ql} \qquad \hat{Q}_e = c_{Q_e} \overline{\Phi}^2 Q_{e,ql}$$

$$\hat{\Gamma} = c_{\Gamma} \overline{\Phi}^2 \Gamma_{ql}$$

- The coefficients are chosen to give zero offset for the whole database of 86 non-linear GYRO turbulence simulations.
 - s-alpha geometry, kinetic electrons and ions
- The coefficients would all be the same if the ratios of the fluxes were exactly the quasi-linear ratios.

$\mathbf{c}_{\mathbf{Qi}}$	$\mathbf{c}_{\mathbf{Qe}}$	\mathbf{c}_{Γ}
30.0	32.4	36.6

A model for the zonal flow shear is included to fit the spectrum of the turbulence

• A model for the reduction of the growth rate by the ExB shear due to "zonal flows" γ_{ZF} and the equilibrium electric field γ_{ExB} is used to obtain an effective net growth rate used in the saturated intensity model. $\overline{\Phi}^2(\overline{\gamma})$

$$\bar{\gamma} = \mathrm{Max} \big[(\hat{\gamma} - \alpha_{\mathrm{E}} \hat{\gamma}_{\mathrm{ExB}} - \alpha_{\mathrm{ZF}} \hat{\gamma}_{\mathrm{ZF}}) / \hat{\omega}_{\mathrm{d0}} , 0 \big]$$
 where $\hat{\omega}_{\mathrm{d0}} = k_{\mathrm{y}} (a/R)$

and
$$\hat{\gamma}_{ZF} = \hat{\omega}_{d0} \left(\text{Max} [\hat{\gamma} - \alpha_E \hat{\gamma}_{ExB}, 0] / \hat{\omega}_{d0} \right)^{\beta_{z\gamma}} / \left(k_y^{\beta_{zk}} q^{\beta_{zq}} \right)$$

α_{ZF}	$oldsymbol{eta_{z\gamma}}$	β_{zk}	β_{zq}
0.369	0.906	0.420	0.317

$\alpha_{ m E}$
0.35

A local model for the saturated intensity is sufficient for a good fit

The model for the saturated intensity of the potential fluctuations is local in both k_y and space. $\overline{\Phi}^2 = \widetilde{\Phi}^2/(\rho_s/a)^2$

$$\overline{\Phi}^{2} = \Delta_{ky} \frac{\hat{\omega}_{d0}^{2}}{k_{y}^{4}} \Lambda \qquad \Lambda = \frac{\overline{\gamma}^{\beta_{\gamma}} \left[\alpha_{d0} + (\alpha_{d} Max[\overline{\omega}_{d}, 0])^{\beta_{d}} \right]}{\left[1 + (\alpha_{\gamma} \overline{\gamma})^{\beta_{\gamma}} \left[1 + (\alpha_{d} |\overline{\omega}_{d}|)^{\beta_{d}} \right] k_{y}^{\beta_{k}} \right]}$$

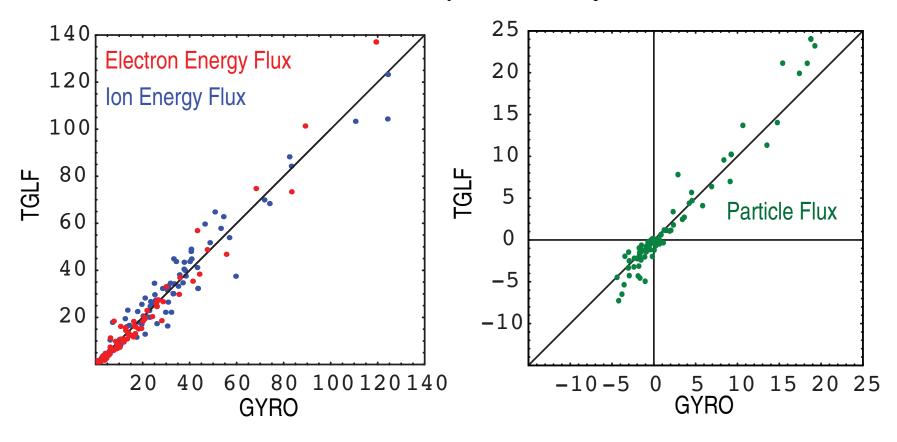
 $\overline{\omega}_{\rm d}$ = $\langle \hat{\omega}_{\rm d} \rangle / \hat{\omega}_{\rm d0}$ is the wavefunction average of the curvature drift.

The intensity model has the weak turbulence limit: $\overline{\Phi}^2 \propto \overline{\gamma}^2$ for $\overline{\gamma} << 1$ and the strong turbulence limit: $\overline{\Phi}^2 \propto \hat{\omega}_{d0}^2$ for $\overline{\gamma} >> 1$

α_{γ}	β_{γ}	α_{d0}	$\alpha_{\rm d}$	β_d	β_k
0.893	1.98	0.072	2.55	1.94	0.933

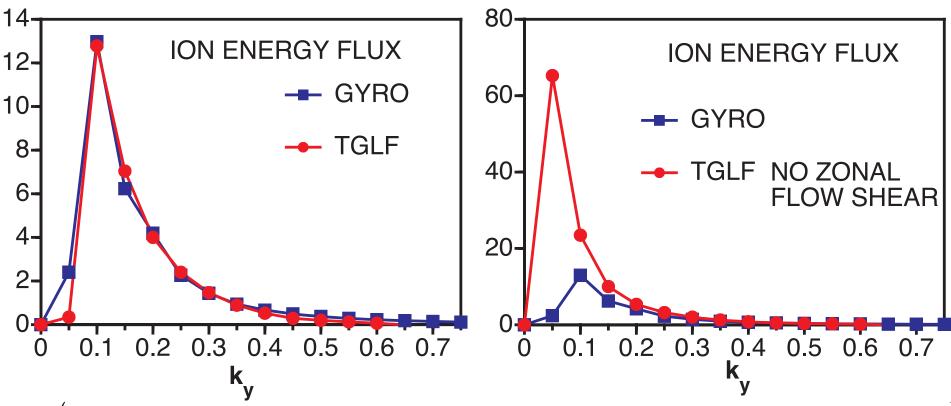
Quasi-linear TGLF fits nonlinear GYRO total fluxes well

- The total fluxes for TGLF fit the database of 86 GYRO runs with fractional deviations of : $\sigma_{\rm Q_i}$ = 16%, $\sigma_{\rm Q_e}$ = 15%, σ_{Γ} = 28%
- GLF23 is a much poorer fit: $\sigma_{Q_i} = 42\%$, $\sigma_{Q_e} = 78\%$, $\sigma_{\Gamma} = 78\%$



Quasi-linear TGLF fits the GYRO flux spectrum well

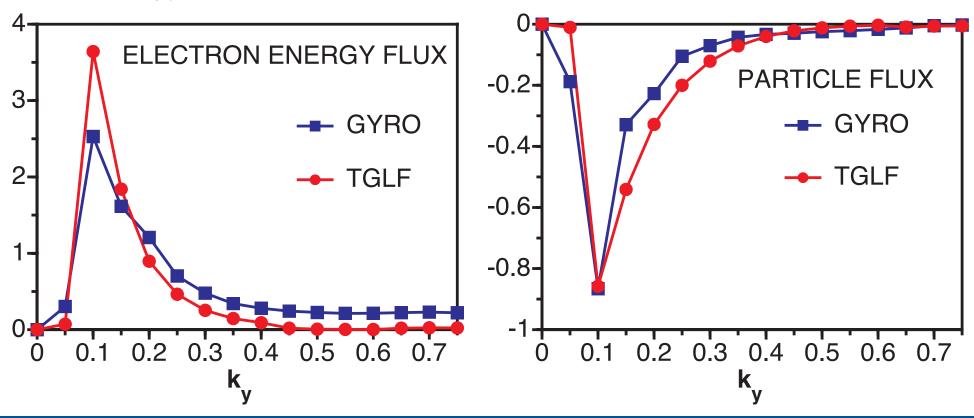
- The detailed shape of the ion energy flux spectrum is well fit by the TGLF model.
- The lowest k_y modes are suppressed by the "zonal flow" shear model as can be seen below with $\alpha_{zr}=0$.



STD = $\left(a/L_{n_e} = a/L_{n_i} = 1, \ a/L_{T_e} = a/L_{T_i} = 3, \ T_i/T_e = 1, \ q = 2, \ \hat{s} = 1, \ \alpha = 0, \ r/a = 0.5, \ R/a = 3.0\right)$

Spectral fits are good for all channels

 The electron energy flux spectrum is generally fit about as well as the ion energy flux spectrum. • The particle flux spectrum is best fit when the particle flux is not close to zero.



TGLF is an accurate model of gyro-kinetic theory

- A new Trapped Gyro-Landau Fluid (TGLF) system of equations has been developed that yields a fast, accurate approximation to the linear eigenmodes of gyro-kinetic driftwave instabilities with comprehensive physics.
 - A TGLF eigenmode code is available for stability analysis of experimental discharges.
- A quasi-linear transport model using TGLF eigenmodes and a local model for the saturated fluctuation intensity achieves an excellent fit to a large database of nonlinear gyro-kinetic turbulence simulations using the GYRO code.
 - Extension of the intensity model to high-k ETG modes will use the latest coupled ITG/TEM-ETG GYRO simulations. (Candy & Waltz)

Will TGLF predict the transport in experiments?

- Transport predictions of the TGLF transport model will be tested in conventional tokamaks, low aspect ratio spherical tori and the near separatrix region.
 - This will be a true test of the first principles gyro-kinetic theory foundation of the TGLF model
 - Prediction of the pedestal width in H-mode is a high priority
 - Prediction of transport in ITER
- Planned extensions of TGLF include:
 - General geometry from numerical MHD equilibrium instead of the Miller model which is needed for the pedestal
 - Intensity models that include mode coupling (non-local in wavenumber) and turbulence spreading (non-local in space)
 - Inclusion of equilibrium parallel and ExB velocity shear in the linear eigenmodes (beyond the quench rule)