ETG Scale Turbulence and Transport in the DIII–D Tokamak

Presented at the 21st IAEA Fusion Energy Conference
Chengdu, China

October 16–21, 2006
New results since FEC 2004

- Observed correlation of increased high k ($\sim 35 \text{ cm}^{-1}$, $k_{\perp} \rho_i = 4-10$) turbulence with increased electron heat transport.
 - Consistent with high k turbulence driving at least part of electron heat transport.
- Determined that high k ($\sim 35 \text{ cm}^{-1}$) is not a short λ, remnant or tail of low k ($\sim 1 \text{ cm}^{-1}$) ITG/TEM type modes
- Differing effect of electric field shear on low and high k observed:
 - Low k fluctuation behavior consistent with reduction due to E_r shear
 - High k apparently not affected by E_r shear
- Relative levels of high and low k fluctuation levels comparable to non-linear turbulence simulation (GYRO) results
Recent theoretical work indicates high k turbulence may contribute to anomalous electron heat transport

- Source of electron thermal transport often not well understood.
 - Ion temperature gradient (ITG) ($k_{\perp} \rho_i \sim 0-1$),
 - Trapped electron drive (TEM) ($k_{\perp} \rho_i \sim 0-2$)
 - Electron temperature gradient (ETG) ($k_{\perp} \rho_i > 2$)
- High frequency, high k modes predicted to drive varying levels of electron heat transport.
 - Predictions range from small to significant depending upon model and plasma.
 - Motivates experimental measurements
 - DIII-D, NSTX, FT-2, Tore-Supra
Ultimate goal: test and validate turbulence simulations via experimental comparison.

- Compare turbulence behavior over large k range.

BES, FIR, PCI, reflectometry, magnetics, high k backscatter.

- Broad k range:
 - \(\sim 0-40 \ \text{cm}^{-1}, k_{\perp} \rho_i \sim 0-10 \)

Important to measure broad k range due to potential interaction of various k ranges + allows closer comparison to theory.
Can cover large range of k's depending upon geometry and probe frequency used.

Approach: Collective Thomson scattering is well-suited to study long-to-short wavelength turbulence.

Momentum matching gives
\[k_i + k_w = k_s \]

Energy conservation gives
\[\omega_i + \omega_w = \omega_s \] i.e scattered radiation Doppler shifted.

Bragg Law:
For \(k_i \sim k_s\), can show that
\[k_w = 2k_i \sin(\theta/2) \]
Where \(\theta\) is scattering angle

FIR scattering is dominantly \(k_\theta\)
High k backscattering is dominantly \(k_r\)
Simultaneous data from low to high k using FIR and mm-wave scattering diagnostics

- **Low-k FIR**
 - Poloidal k: $k_\theta = 0-2$ cm$^{-1}$, $k_{\rho_s} = 0-0.3$
 - Chord average
- **Intermediate-k FIR**
 - Poloidal k: $k_\theta = 8-15$ cm$^{-1}$, $k_{\rho_s} = 2-5$
 - Spatial localization, ±15 cm at 15 cm$^{-1}$
- **High-k mm-wave backscatter**
 - Radial k: $k_\theta = 35-40$ cm$^{-1}$, $k_{\rho_s} = 4-10$
 - Chord from r/a=1 to r/a=0.4
High k system measures k_r along a chord

- k is dominated by radial k_r with small poloidal k_θ component
 - e.g., $k_r \approx 34.95 \text{ cm}^{-1}$ and $k_\theta \approx 1.2 \text{ cm}^{-1}$ for $k=35 \text{ cm}^{-1}$.
- Wavenumber resolution $\Delta k \approx \pm 0.2 \text{ cm}^{-1}$.
- Frequency is well above cutoff
 - Refraction small, $<1^\circ$
- Refractive index reduces probed k 35-40 cm$^{-1}$ for plasmas discussed here.
Electron Cyclotron Heating (ECH) of plasma primarily modified Te and turbulence behavior

- Used ECH (~2.5 MW) to locally heat plasma
 - \(I_p = 800 \text{kA}, B_T = 2 \text{T}, n_e = 1.7 \times 10^{13} \text{ cm}^{-3} \)
- \(T_e \) increased, small decrease in \(n_e \), no effect on \(T_i \)
- Monitor fluctuation levels, gradients, etc. and compare to theory.

Times used in analysis:
- ECH, 3100 ms
- Ohmic, 1975 ms
T_e increased with ECH, n_e decreased, modifying potential instability drives

- Effect of ECH is observed most strongly on T_e.

ECH heating at $r/a \sim 0.6$
Electron heat flux increased substantially with ECH

- Fluxes determined using power balance and ONETWO transport code.
- Ion heat flux not strongly modified.

ECH heating at r/a~0.6
Differing response to ECH indicates that high k (35 cm$^{-1}$, $k_{\perp} \rho_i = 4-10$) is not a remnant or tail of low k (\sim1 cm$^{-1}$)

- **High k fluctuation level increases while low k \simconstant.**
 - Low k reflectometry also shows no increase with ECH
 - Important as this relates to origin of high k
- **Note narrowing of low k frequency spectrum**
 - Consistent with a change in the Doppler shift.
Increase in high k turbulence correlates with increased electron heat flux

- Lack of change in ion heat flux consistent with lack of change in low k turbulence
- Increased electron heat flux due solely to increased high k fluctuations not measured, can be estimated to be as much as 30% over base flux using \[\tilde{q}_e = n\langle \tilde{T}_e \tilde{E}_\theta \rangle/B \propto nk_\theta T_e^2 (\tilde{n}/n)^2 / B \]
 - Flux due to high k higher if include measured increase in \(T_e \)
 - Need more direct experimental tests plus non-linear simulations.
Critical gradient analysis indicates plasma is unstable to electron temperature gradient driven modes (ETG)

- Experimental T_e scale length exceeds predicted critical scale length for electron temperature gradient driven modes (ETG) over large region
- Critical scale length from Jenko, et al. PoP2001

ECH heating at $r/a \sim 0.6$
Linear gyrokinetic calculations (GKS code) show increases in both low and high k growth rates with ECH.

- Expect increases in both low and high k in outer plasma regions - however, experimentally low k \(k \) is constant.

- **GKS**: linear gyrokinetic code calculates growth rates and frequencies for toroidal drift waves.

 - Calculations are for \(k_\theta \), high k is principally \(k_r \).

 \[
 k = 1 \text{ cm}^{-1}
 \]

 \[
 k = 35 \text{ cm}^{-1}
 \]
Radial E_r decreases with ECH however resulting E_r shear is increased.

- Resulting decrease in V_{ExB} is consistent with observed decrease in frequency width of low k fluctuations.
- ExB shearing rate is found to be a significant fraction of calculated low k growth rates.
 - Potential explanation for GKS prediction of increased low k during ECH while experiment shows constant level
 - Note that high k apparently unaffected by shear.

ECH heating at $r/a\sim0.6$
Recent GYRO simulations find ETG scale turbulence isotropic in k_r-k_θ

- Non-linear turbulence GYRO simulations addressing realistic coupling ITG/TEM/ETG simulations (From R. Waltz, et al., General Atomics)
- GYRO simulation conditions are close to but not same as experimental plasma studied here and only one radial position.
 - Experiment covers range in both r/a and in plasma parameters
 - Need more simulation results to compare with!
GYRO simulation parameters are close to experiment

- **GYRO simulation parameters (so-called “GA standard conditions”)**
 - \(\hat{s} = 1, q = 2, r/a = 0.5, R/a = 3, a/L_T = 3, a/L_n = 1, T_e/T_i = 1 \)
- **“Cyclone conditions” are similar:**
 - \(\hat{s} = 0.8, q = 1.4, r/a = 0.54, R/a = 3, a/L_T = 2.3, a/L_n = 0.73, T_e/T_i = 1 \)
- **In simulation only one radial position documented, r/a~0.5**
Broadband turbulence response to short NBI blips somewhat different from ECH response

- Perturbed Ohmic plasma with short NBI blips ($P_{inj} \approx 2.5 \text{ MW}$)
 - $I_p = 800 \text{kA}$, $B_t = 2 \text{T}$, $n_e = 1.7 \times 10^{13} \text{ cm}^{-3}$
- T_e, T_i increased but no significant change in n_e
- Fluctuation levels increase with NBI over broad range in k
 - As opposed to only the high k increasing with ECH
 - Example shown is high k, 35 cm^{-1}.
 - Next compare theoretical and experimental response of different wavenumbers
GKS predicts plasma unstable over broad range in k: 1-35 cm\(^{-1}\), \(k_\perp \rho_i \approx 0-10\)

- Good counterpoint to ECH data.
- Range of instabilities corresponds to ITG, TEM, ETG type instabilities.
- Note that with exception of high \(k\) the growth rates do not change strongly with the NBI
Quantitative comparison of high k and low k fluctuation levels reveals large difference in magnitude

- Fluctuation magnitude increases and broadens with NBI
- Ohmic fluctuation levels \tilde{n}/n:
 - Low k: $\tilde{n}/n \sim 8 \times 10^{-3}$
 - $\rho=0.7$, $k_\perp \rho_i \sim 0.2-0.4$, BES
 - High k: $\tilde{n}/n \sim 3 \times 10^{-6}$
 - $\rho=0.4-1.0$, $k_\perp \rho_i=4-10$ high k
 - \tilde{n}/n increases $\sim 25\%$ with NBI
Ratio of high to low k fluctuation levels compare reasonably well with non-linear GYRO simulation

- Simulation:
 - \((\bar{n}/n)_{\text{high k}}/(\bar{n}/n)_{\text{low k}} \approx 10^{-3}\)

- Ratio compares reasonably well with experimental ratio
 - \((\bar{n}/n)_{\text{high k}}/(\bar{n}/n)_{\text{low k}} \approx 0.4 \times 10^{-3}\)

- Simulation shown is at \(r/a=0.5\) and for conditions which are close to but not same as experimental plasma.
Summary

- DIII-D has a comprehensive set of turbulence diagnostics spanning a wide range in k: ITG, TEM, ETG relevant
- Observed correlation of increased high k (~35 cm\(^{-1}\), \(k_{\parallel\rho_i}=4-10\)) turbulence with increased electron heat transport.
 - Consistent with high k turbulence driving at least part of electron heat transport.
- Determined that high k (~35 cm\(^{-1}\)) is not a short \(\lambda\) remnant or tail of low k (~1 cm\(^{-1}\)) ITG/TEM type modes
- Differing effect of electric field shear on low and high k observed:
 - Low k fluctuation behavior consistent with reduction due to \(E_r\) shear
 - High k apparently not affected by \(E_r\) shear
- Relative levels of high and low k fluctuation levels comparable to non-linear turbulence simulation (GYRO) results