EDGE LOCALIZED MODE CONTROL IN DIII-D USING MAGNETIC PERTURBATION-INDUCED PEDESTAL TRANSPORT CHANGES

by

APRIL 2006
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
EDGE LOCALIZED MODE CONTROL IN DIII-D USING MAGNETIC PERTURBATION-INDUCED PEDESTAL TRANSPORT CHANGES

by

This is a preprint of a synopsis of a paper to be presented at the 21st IAEA Fusion Energy Conference, October 16-21, 2006, in Chengdu, China, and to be published in the Proceedings.

*University of California-San Diego, La Jolla, California.
†Association EURATOM-CEA, Cadarache, France.
‡University of California-Los Angeles, Los Angeles, California.
§Lawrence Livermore National Laboratory, Livermore, California.
¶Kharkov Institute for Physics and Technology, Kharkov, Ukraine.
‖University of Wisconsin-Madison, Madison, Wisconsin.
§§Max Planck Institute, Greifswald, Germany.
◊Sandia National Laboratories, Albuquerque, New Mexico.

Work supported by the U.S. Department of Energy under DE-FG02-04ER54758, DE-FC02-04ER54698, W-7405-ENG-48, DE-FG03-01ER54615, and DE-AC04-94AL85000

GENERAL ATOMICS PROJECT 30200
APRIL 2006
Edge localized modes (ELMs) induce transport across the H-mode pedestal that enables steady-state operation with good particle exhaust and low impurity contamination. However, the impulsive heat load from ELMs is predicted to erode the divertor target plates and limit the divertor lifetime. Consequently, a technique that replaces the ELM-induced transport with more steady transport while preserving the good H mode confinement would enhance the viability of ITER and future tokamak reactors. This paper describes the results of experiments in DIII-D that use edge resonant magnetic perturbations (RMPs) with n=3 toroidal symmetry to eliminate large Type I ELMs at pedestal collisionalities $\nu_e^* \sim 0.2$, typical of those expected for ITER, by enhancing the radial transport across the H mode pedestal, thereby reducing the pedestal pressure gradient ∇p_{TOT} enough to stabilize the MHD modes that trigger ELMs (Fig. 1).

Fig. 1. (a) Large ELMs (as indicated by D_{α}) are suppressed by I-coil magnetic perturbations (grey shaded region) at ITER-relevant ν_e^* (c) without degrading confinement as indicated by the H-mode quality factor H_{98y2}. (d) Pedestal profile of ∇p_{TOT} during the ELM suppressed phase (red) is reduced well below its value in the ELMing phase (black). (e) ELITE MHD stability calculations show that the reduced ∇p_{TOT} during ELM suppression (red X) is well inside the stability boundary (schematically indicated by the green line).

Work supported by the U.S. Department of Energy under DE-FG02-04ER54758, DE-FC02-04ER54698, W-7405-ENG-48, DE-FG03-01ER54615, DE-FG03-96ER54373, and DE-AC04-94AL85000.