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General Atomics, P.O. Box 85608, San Diego, CA 92186-5608
email: candy@fusion.gat.com

This work reports on the first realistic numerical studies of small-scale electron-temperature-
gradient (ETG) turbulence embedded in large-scale ion-temperature-gradient plus trapped-
electron-mode (ITG/TEM) turbulence. Results are derived from simulations with the global
Eulerian (continuum) gyrokinetic code GYRO [1]. GYRO contains all the physics needed for a
physically realistic description of tokamak core transport. Previous GYRO simulations of low-
k⊥ ITG/TEM turbulence have reproduced core transport levels in DIII-D L-mode discharges
[2] (in the absence of transport barriers) roughly within experimental error. Previous GYRO
simulations have also shown that neoclassical ion transport (k⊥ ∼ 0) is additive to turbulent
transport with no significant interaction [3].
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Fig. 1. (a) Small electron-scale-box simulations of the Cyclone base case, comparing χe com-
puted with the ETG-ai model (dotted red curve) with χe computed with the ETG-ki model
(black curve) as a function of magnetic shear, s. The diffusivities are total χe in electron
gyroBohm units. (b) Large ion-scale-box simulations of the GA standard case comparing the
ITG/TEM (blue dashed curve) and ETG (solid curve) components of the electron energy dif-
fusivity, χe, as a function of the equilibrium E×B shearing rate γE. The curves are normalized
to the total χe at γE = 0.

In prior studies, in order to keep the problem numerically tractable, the simulation commu-
nity has assumed that ions are exactly adiabatic (the so-called ETG-ai model) so that high-k⊥

electron transport from ETG effectively decouples from low-k⊥ ITG/TEM transport. However,
there has been considerable speculation on the need for nonlinear coupling between ITG/TEM
and ETG turbulence [4]. To this end, we have made the necessary modifications and opti-
mizations in GYRO in order to rigorously simulate the ITG/TEM-ETG coupling. Hereafter, we
define ETG transport as that which arises from kθρi > 1; namely, χETG

i , χETG
e and DETG. Anal-

ogously, we define ITG/TEM transport as that which arises from kθρi ≤ 1; namely, χ
ITG/TEM

i ,

χ
ITG/TEM
e and DITG/TEM. In the ETG range, ions are almost exactly adiabatic. To get finite

χETG
i or DETG, or to describe ITG/TEM-to-ETG coupling, we require kinetic (nonadiabatic)

ions. There are two basic approaches we use to study ITG/TEM-ETG coupling, both employ-
ing fully gyrokinetic ions: (1) short-scale ETG-ki simulations, as in Fig. 1a, reaching up to
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kθρe ∼ 0.75 but having small electron-scale boxes (e.g. Lx ×Ly = 256ρe × 128ρe); and (2) long-
scale simulations, as in Fig. 1b, reaching only up to kθρe ∼ 0.3 but having boxes large enough
to capture the full ITG/TEM physics (e.g. Lx × Ly = 64ρi × 64ρi). Here, ρi and ρe are the
electron and ion thermal gyroradii, where ρi = µρe and µ = (mi/me)

1/2. In a deuterium plasma,
µ = 60, whereas for the simulations in this paper we have used µ = 20 (reduced electron mass)
to limit the computational cost, which increases slightly more rapidly than µ3. Our results,
briefly summarized, indicate that

1. the ETG-ai model does not always saturate nonlinearly;

2. nonadiabatic (gyrokinetic) ions are required for robust saturated states of χe;

3. χETG
e does not significantly add to χ

ITG/TEM
e except when the latter is reduced due to

equilibrium E×B shear;

4. ITG can affect ETG (turning on the ITG drive can partially reduce χETG
e );

5. there appears to be minimal downward ETG cascade (adding successively higher k⊥ ETG
drive does not affect the low-k⊥ ITG/TEM transport).

We now discuss some specific simulation details. Figure 1a shows a magnetic shear scan compar-
ing ETG-ai GYRO simulations (dotted red curve) to ETG-ki simulations (solid black curve) for
Cyclone base case parameters. We emphasize that previous simulations of ETG scales (covering
kθρe > 0.3) have used the ETG-ai model [5]. We also remark that the ETG-ai s = 0.1 case has
been the subject of a 4-way benchmark comparison [6], for which excellent agreement amongst
Eulerian codes (GYRO, GS2, GENE) and a PIC code (PGEQ3) was obtained. Remarkably,
GYRO simulations show that saturated states using the ETG-ai model do not exist beyond
s ∼ 0.35. Although PIC simulations have previously found finite saturated values for χe at
s = 0.8, this was shown to be a result of error due to discrete particle noise [7-8]. In contrast to
the ETG-ai model, χETG

e obtained using kinetic ions (ETG-ki) does saturate (i.e., when kinetic
ion dynamics and correct ion zonal flow physics at kθρi = 0 are included). We have defined
cs = vi = (T/mi)

1/2 and χGB
e = ρ2

eve/a.

Switching now to large ion-scale boxes, Fig. 1b shows simulations spanning both ETG and

ITG/TEM scales. In the absence of E×B shearing (γE = 0), χETG
e is less than 20% of χ

ITG/TEM
e ,

and χETG
i ∼ DETG ∼ 0. However, as shown in Fig. 1b, high-k⊥ ETG transport can still be

significant when E×B shear stabilizes the low-k⊥ ITG/TEM transport. At a shearing rate of
(a/cs)γE > 0.4, the ETG transport is slightly reduced but can exceed ITG/TEM transport.
This result supports the hypothesis that ETG transport is the key electron transport mecha-
nism within an ion transport barrier (ITB). We expect that these conclusions are qualitatively
preserved at µ > 20. Simulations to test this are underway.
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