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Alpha particles may drive Alfvén eigen-
modes unstable in ITER and other burning
plasma experiments. If they do, the most
important practical issue is the resultant fast-
ion transport. Will benign local flattening of
the alpha pressure profile occur? Or will the
alphas escape from the plasma and damage
the vessel wall? Remarkably, in the only
published studies of this important issue, the
calculated transport by toroidicity-induced
Alfvén eigenmodes (TAE) is much smaller
than the measured losses [1,2]. To resolve
this discrepancy and benchmark theoretical
predictions for ITER, detailed measurements
of internal fluctuations and of fast-ion pro-
files are essential.

In DIII-D, new diagnostics are applied to
the TAEs, reversed shear Alfvén eigenmodes
(RSAE) [3,4], and compressional Alfvén
eigenmodes (CAE) [5] that occur during in-
jection of ~80 keV neutral beams. Figure 1
shows fluctuation and fast-ion profile data
from a discharge with TAE and RSAE
activity. The activity is strongest early in the
discharge [Fig. 1(a)] when the q profile is
strongly reversed and causes suppression of
the neutron rate [Fig. 1(b)]. Fluctuation
profiles show spatially localized RSAEs and
globally extended TAEs [Fig 1(c)]; the
RSAEs are localized near the minimum of q.
Fast-ion signals indicate large reductions in
the fast-ion density in the plasma core during
the strong Alfvén activity [Fig. 1(d)].

0
0.4

110

10

(e
V2  k

Hz
–1

)

1

RSAEs

TAEs100

90

80

70

60

1.5

1.0

0.5

0
0.1 0.3 0.5 0.7

0.2 0.4
Normalized Minor Radius ρ

FIDA (a.u.)

Equilibrium (104 Pa)

Normalized Minor Radius ρ

0.6 0.8 1.0

Fr
eq

ue
nc

y 
(k

Hz
)

Fa
st

-Io
n 

Pr
of

ile
0.8 1.2

Time (s)
(c) ECE (0.41 s)

(d)

1,21 s

0.78 s

0.37 s

(a) Magnetics

(b) Neutrons (Exp/Classical)
1
0
1 #122117

Fig. 1. Time evolution of (a) a Mirnov coil signal
that is high-pass filtered at 50 kHz and (b) the
neutron rate normalized to the classically predicted
rate. (c) ECE power spectra vs. normalized minor
radius ρ. The modes are identified as RSAEs or
TAEs from the time evolution of the frequency. (d)
Fast-ion profiles vs ρ  during strong (red) and
modest (green) activity. The curves are from kinetic
equilibrium analysis; the symbols represent FIDA
data for perpendicular energies between 30-60 keV.

*Work supported by the U.S. Department of Energy under SC-G903402, DE-FG03-97ER54415, DE-FC02-04ER54698,
DE-AC02-76CH03073, DE-FG03-96ER54373, DE-FG03-01ER54615, and DE-AC05-76OR00033.



ALFVéN INSTABILITIES IN DIII-D: FLUCTUATION PROFILES, THERMAL-ION
EXCITATION, AND FAST-ION TRANSPORT W.W. Heidbrink, et al.

GENERAL ATOMICS REPORT GA-A25338 2

The fast-ion profile is from a new diagnostic technique based on Balmer-alpha light [6].
These fast-ion Dα (FIDA) measurements are corroborated by neutral-beam current and pres-
sure profiles inferred from the equilibria, as well as neutral particle and neutron diagnostics.

Several DIII-D diagnostic systems have improved sensitivity and bandwidth for the
detection of Alfvén modes. CO2 interferometers measure line-integrated density fluctuations
along four spatial chords [7]. Far-infrared 300 GHz low-k scattering also measures the line
integral of the density fluctuations. Microwave quadrature reflectometers provide local
density fluctuation measurements [8], as does an upgraded, high throughput, beam emission
spectroscopy (BES) diagnostic [9]. The BES diagnostic also measures the poloidal
wavenumber kθ. The upgraded electron cyclotron emission (ECE) diagnostic provides local
electron temperature fluctuation measurements.

Internal fluctuation data are being compared to theoretical predictions of the Alfvén mode
structure. For example, calculations with the NOVA-K code explain why vertical
interferometer views are generally more sensitive to TAEs than radial chords [7]. BES
measurements confirm that RSAEs are localized near the minimum of the safety factor qmin
[3]. Reflectometer measurements check predictions of a radially localized eigenmode for the
CAE [10]. NOVA-K successfully explains the coupling between RSAEs and TAEs observed
in Fig. 1(c).

A surprising result of these comparisons
is that RSAEs are excited over a wide spatial
range (from the device size at the longest
wavelengths down to the thermal ion Larmor
radius ρi at the smallest). Unstable toroidal
mode numbers as large as n=40 are inferred
[11]. The measured poloidal wavelengths
(Fig. 2) imply 0.15 < kθρi < 0.55. These val-
ues are comparable to the scale length of
electrostatic drift wave turbulence. Analysis
suggests that the ion temperature gradient
near qmin plays a role in mode
destabilization. NOVA-K calculations
indicate that the thermal ion drive is
dominant for n > 10.
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Fig. 2. BES measurements of poloidal wavenumber
for two bands of RSAEs that are excited near qmin.

With these benchmarked theoretical eigenfunctions, we will use the ORBIT code to
compute the expected fast-ion transport in these wavefields, as in our earlier study [1]. The
ORBIT predictions will be compared with the FIDA data. With a firm understanding of fast-
ion transport by Alfvén instabilities in DIII-D, credible predictions for ITER will become
possible.
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