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Results are presented from comparisons of modeling and experiment in studies to assess
the best choice of discharge shape, q profile and pressure profile for high beta, steady-state,
advanced tokamak operation. This is motivated by the need for high qminβN to maximize the
self-driven bootstrap current while maintaining high toroidal beta to increase fusion gain, and
the requirement that the current profile and pressure profile be self-consistent in steady-state,
100% noninductive discharges. Experiment and theory both show that increases in the
achievable normalized beta (βN) can be obtained through broadening of the pressure profile
(Figs. 1−3) and use of symmetric double-null divertor shape (Fig. 4). With broad pressure
βN = 4 is obtained with the minimum q value (qmin) near 2 and qminβN increases with qmin.
Modeling of equilibria with near 100% bootstrap current indicates that operation with βN ≈ 5
should be possible with a sufficiently broad pressure profile. The experimental βN values are
well above the no-wall limit. As a result, the plasma response can amplify asymmetric fields
causing increased toroidal drag and steepening of the rotation profile. This tends to produce
internal barrier-like conditions in which pressure peaking can increase.

Optimization of qminβN is a key to improving the prospects for steady-state advanced
tokamak discharges. Steady-state operation requires 100% of the plasma current to be driven
noninductively which is best achieved with a high bootstrap current fraction, fBS ∝  βP ∝
qβN, motivating elevated q values across the entire profile. The advanced tokamak scenarios
under study at DIII-D have 1.5 < qmin < 3, q95 ≈ 5. The requirement of high fusion gain
(∝ βτE ∝ βN H89/q95

2 ) means that qβN should be optimized by increasing qmin rather than q95
and that a high value of the βN limit with wall stabilization is needed. Present DIII-D high
performance, high noninductive current fraction discharges operate with βN = 3.2 to 3.5,
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Fig. 1.  Calculated ideal n = 1 stability limit as a function
of pressure peaking (circles). The scatter in points is a
result of variation of discharge shape. The squares are the
measured values for the discharges in Fig. 2.
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Fig. 2.  Measured pressure profiles for discharges
with and without extra gas puff to broaden the
density and pressure profiles.
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Fig. 3.  Experimental and theoretical scaling of βN
with the minimum value of q.
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Fig. 4.  Measured (squares) βN for three discharges
with varying shape. Higher values of q95 I/aB have
stronger shaping. Shaded areas show the calculated
ideal n=1 limit where the shading represents the
profile measurement uncertainties.

qmin ≈ 1.5. Optimization of beta limits would allow operation at qmin ≈ 2.5, βN > 4 where fBS
would be significantly improved.

Beta limits are predicted to increase strongly as the pressure profile is broadened. This is
found in a study of the low toroidal mode number (n) stability of model equilibria as shown
in Fig. 1 for n=1. The stability limit was tested for a wide range in discharge shape.
Normalized beta limits above 6 for n=1 and near 5 for n=2 are predicted for optimum DIII-D
discharge shape (e.g. κ = 2.1, δ = 0.8) and pressure profile peaking factor P(0)/〈P〉 < 2.3. The
maximum βN values in the database of steady-state scenario discharges agree with the pre-
dicted trend (Fig. 1).

This predicted increase in βN limit with pressure profile width is observed in the experi-
ment. The pressure profile was broadened (Fig. 2) by using additional gas puffing to broaden
the density profile. P(0)/〈P〉 decreased from 2.8 to 2.2 and the maximum βN increased from
3.4 to 4. The βN limiting instability changed from a disruption due to an n=1 resistive wall
mode to a non-disrupting tearing-type mode. As shown in Fig. 1, the tearing mode limited
case is predicted to still be significantly below the ideal wall limit.

Reduction in toroidal rotation, a consequence of drag by asymmetric fields which are
amplified above the no-wall β limit, is a key indicator of the modified beta limit. In the dis-
charge with stronger pressure peaking there are two large decreases in toroidal rotation: as βN
reaches the no-wall limit and when βN nears 3.4, the peak value. With the broader pressure
profile, there is no strong rotation decrease until βN ≈ 4. In both cases, as βN nears its peak
value the pressure becomes more peaked. This correlates with a reduction in rotation to near
zero in the discharge outer half and increased rotation shear near mid-radius which can mod-
ify the energy transport profile.

With broader pressure profiles, the achievable βN value with qmin ≈ 2.5 is close to that
achieved with qmin ≈ 1.5 (Fig. 3). The trend is still for the maximum achievable βN to
decrease somewhat with qmin, similar to the measured and calculated no-wall limits (Fig. 3).
However, with pressure profile broadening by gas puffing, qminβN increases with qmin, offer-
ing the prospect of an optimized steady-state, high fBS operating regime.

The achievable βN value is further increased through choice of discharge shape, particu-
larly by use of an up/down balanced double-null divertor. This contrasts with the single-null
divertor shape presently used with the available divertor cryopumps to reduce density in
order to increase the EC-driven current. In the experiment, the standard single-null shape was
compared to two others that maximized triangularity (δ), elongation (κ) and up/down symme-
try. The result was an increase in the maximum βN from 3.6 to 4.1, in agreement with theory
(Fig. 4). A measurement of the no-wall βN limit also showed an increase through a change
from single to double-null divertor. An extensive modeling study of low-n stability limit
dependence on κ, δ and squareness is in agreement with the experimental results. The correct
choice of squareness for a given κ, δ was found to be important.

Experiment and modeling are also pointing to a possible alternate steady-state scenario
with a relatively flat q profile, q95 − qmin < 1. A modeling study of an equilibrium with q95 ≈
3 and qmin ≈ 2 has predicted an ideal wall βN limit of 13li ≈  6.5. Experiments have shown
promise, with maximum βN ≈ 4 thus far.




