Suppression of large edge localized modes with a stochastic magnetic boundary in high confinement DIII-D plasmas

Presented by T. E. Evans

General Atomics, San Diego, CA, USA

With contributions from:

R. J. Groebner, G. L. Jackson, R. J. La Haye, A. W. Leonard, T. H. Osborne,

M. J. Schaffer, W. P. West - General Atomics, San Diego, CA, USA

R. A. Moyer, J. A. Boedo, D. L. Rudakov - UCSD, La Jolla, CA, USA

J. G. Watkins - Sandia National Laboratories. USA

M. Becoulet, P. R. Thomas- CEA Cadarache, France

M. E. Fenstermacher, M. Groth, C. J. Lasnier - LLNL, CA, USA

K. H. Finken - FZ-Julich, Germany

J. H. Harris, D. G. Pretty - Australian National University, Australia

E. J. Doyle, T. L. Rhodes, G. Wang, L. Zeng - UCLA, Los Angeles, CA, USA

S. Masuzaki, N. Ohyabu - National Institute for Fusion Science, Gifu-ken, Japan

H. Reimerdes - Columbia University, New York, NY, USA

M. R. Wade - ORNL, Oak Ridge, TN, USA

1-6 November 2004, Vilamoura, Portugal

DIII-D has made substantial progress toward developing an ELM control solution for ITER

- Type-I ELMs are suppressed with resonant magnetic perturbations
 - no confinement degradation
 - good suppression for $\Delta t \sim 9\tau_E$ (some isolated ELMs remain)
- A new type of dynamical state replaces Type-I ELMs
 - transport dominated by small, high frequency fluctuations
 - Magnetic fluctuations increase at higher frequencies and shift to higher toroidal mode numbers (n = 1- 3 core modes shift to n = -2 to -5 edge modes)
 - divertor surface temperature spikes reduced by at least a factor of 5
 - divertor particle flux impulses reduced by at least a factor of 8
 - stored energy impulses from the pedestal reduced by a factor of 3
- Suppression is resonant in: q95, shape, I-coil configuration, etc.
 - field errors have a significant impact on ELM character
- Good suppression is obtained in high triangularity (δ =0.76), ITER scenario 2 (δ =0.60) and lower single null (δ =0.37) shapes
- Looks promising for ITER ELM control

MOTIVATION AND APPROACH

Evans EX2-5Ra

tee-04IAEA-3/33

ELM control is a high priority ITER issue

- Normalized ELM energy ($\Delta W_{ELM}/W_{ped}$) increases with T_e^{ped}
- In ITER $\Delta W_{ELM} / W_{ped} > 20\%$
 - exceeds carbon ablation limit by a factor of 2-4

tee-04IAEA-4/33

The DIII-D I-coil provides a flexible system for **n=3 ELM control experiments**

DIVERTOR IMPULSES ARE SIGNIFICANTLY REDUCED DURING I-COIL ELM SUPPRESSION

Evans EX2-5Ra

tee-04IAEA-6/33

ELMs are suppressed without degrading confinement

Peaks in the divertor surface temperature due to ELMs are reduced by at least a factor of 5 with the I-coil

tee-04IAEA-8/33

Langmuir probes show a factor of 8 reduction in the impulsive particle flux to the divertor

IONAL FUSION F

SAN DIEGO

tee-04IAEA-9/33

Radial extent of ELM driven lower divertor particle flux is significantly reduced inside resonant q₉₅ window

Evans EX2-5Ra

- Inside the I-coil resonance window 3.7≤ q₉₅≤3.5:
 - the amplitude of large particle flux impulses are reduced
 - the spatial extent of large particle flux impulses are reduced
- Large particle flux impulses return (amplitude and spatial extent) below the resonant window q₉₅ < 3.5
- Particle flux and D_α recycling impulses are reduced by a factor of 3-6 during the I-coil pulse

J. Watkins SNL

SUBSTANTIAL CHANGES IN PEDESTAL DYNAMICS SEEN DURING ELM SUPPRESSION

Evans EX2-5Ra

tee-04IAEA-11/33

Dynamical state of pedestal changes globally

- Suppression seen on:
 - all D_α arrays (outer midplane, upper and lower divertor, inner wall)
 - particle flux and heat flux to the primary (lower) divertor
- ELM transport is replaced by an increase in edge magnetic field and density fluctuations
 - modulated by a 130 Hz coherent oscillation

Stored energy drops are smaller and slower with the I-coil reducing the impulses by > 3X

tee-04IAEA-13/33

I-coil pulse suppresses the convective loss channel along B field

- ELM suppression obtained at high density with small ΔT_e and little conductive energy loss
- I-coil pulse modifies
 ELMs at lower
 density with a more
 significant
 conductive loss
 - limited run time allotted in 2004 for low n_e ELM suppression work
 - I-coil current limit (4.4 kA) expected to increase to 7 kA in 2005

I-coil reduces ELM density impulses to the wall

High frequency fluctuations replace ELM transport
 bursty, intermittent and less impulsive

tee-04IAEA-15/33

MODEST PEDESTAL PROFILE CHANGES ARE CONSISTENT WITH UNALTERED CONFINEMENT

Evans EX2-5Ra

tee-04IAEA-16/33

Time averaged pedestal profiles do not show edge flattening due to strong stochaticity

SAN DIEGO

tee-04IAEA-17/33

CVI ion measurements show a broadening of T_i and P_{CVI} across the pedestal but E_r and v_θ are preserved

- Toroidal rotation drops through 0 and reverses in edge!
- H-mode transport
 barrier is preserved
 - $\begin{array}{ll} & \mathbf{v}_{\theta} \ \mathbf{\&} \ \mathbf{E}_{\mathbf{r}} \ \mathbf{well} \ \mathbf{don't} \\ \mathbf{change} \end{array}$
 - Increased ∇P_i
 offsets change in
 V_φ in single ion
 force balance
- T_i and ∇P_i^{CVI} changes may be important for j_{BS} and stability

I-coil pulse delays variation of total pedestal pressure relative to ELM cycles without I-coil

- Time between ELMs = 13 ms on average without the I-coil
- Time between isolated events/ELMs = 64 ms with I-coil.

ROTATION DROPS AND MAGNETICS SHOW POWER REDISTRIBUTION FROM LARGE ELMS TO SMALL SCALE, HIGH FREQUENCY FLUCTUATIONS

Evans EX2-5Ra

tee-04IAEA-20/33

Strong toroidal rotation damping seen during ELM suppression

Evans EX2-5Ra

H. Reimerdes Columbia U

- Modeling indicates small islands on 4/3, 3/2, and 2/1 surfaces
- Sawteeth lost on soft X-ray signal as rotation drops

tee-04IAEA-21/33

Loss of edge toroidal momentum takes about 50 ms and reverses direction after ~ 130 ms

- Core rotation decays in 300 ms; edge has a fast drop (~50 ms) followed by a slower decay
 - Mirnov coils see slowing down in the downshift of internal MHD modes (here, q=1 & 2)
- ELMs suppressed within 1 ELM cycle \approx 15 ms

Amplitude of magnetic fluctuations increase at higher frequencies and mode numbers

• Power in edge B_{θ} fluctuations increases up to $f_N = 50$ kHz

- quiet intervals between ELMs fill in with higher n edge modes
 - n = 1 3 core modes shift to n = -2 to -5 edge modes

MODELING CONFIRMS IMPORTANCE OF SMALL SCALE MAGNETIC ISLANDS

Evans EX2-5Ra

tee-04IAEA-24/33

Field line integration modeling indicates that small islands may be linked to ELM suppression mechanism

Evans EX2-5Ra

• Small scale, high k_{θ_i} remnant islands formed across the pedestal with $\phi_{tor} = 0^{\circ}$

- due to mixing of I-coil and field-error spectrum

TRIP3D modeling (no plasma response included)

tee-04IAEA-25/33

Resonant character of ELM suppression verified during q-scans

- Plasma current was ramped during the I-coil pulse in a series of discharges to determine the optimum range of q₉₅ for the ELM suppression
- Strong suppression of Type I ELMs for $3.5 \le q_{95} \le 4.0$

Islands change size and shape during q scan - local stochastic minimum at $q_{95} = 3.7$

Evans EX2-5Ra

- Suppression when (9,3) island is at/near top of pedestal
- Density of small scale states due to I-coil and fielderror mixing is a maximum at q95 = 3.7
 - But edge stochastic loss region is minimized

tee-04IAEA-27/33

ELM SUPPRESSION IS SEEN WITH VARIOUS SHAPES AND I-COIL CONFIGURATIONS

Evans EX2-5Ra

tee-04IAEA-28/33

Good ELM suppression is obtained in LSN, high triangularity and ITER scenario 2 shapes

tee-04IAEA-29/33

Changing the toroidal phase of the I-coil significantly increases the midplane D_{α}

SAN DIEGO

With $\phi_{tor} = 60^{\circ}$ the ELM frequency and amplitude is reduced in the divertors - more I-coil current needed?

- Odd parity, \$\overline{\phi_tor}\$
 = 60°
 perturbations
 reduce ELMs
 in divertor
- Midplane D_α increases:
 - baseline
 covers
 remaining
 ELMs
 - Has classic stochastic character
 - Similar to EDA mode

The pedestal ion and electron channels have a more stochastic character with $\phi_{tor} = 60^{\circ}$

tee-04IAEA-32/33

Summary and Conclusions

- Type-I ELMs are suppressed with resonant magnetic perturbations
 - no confinement degradation
 - good suppression for $\Delta t \sim 9\tau_E$ (some isolated ELMs remain)
- A new type of dynamical state replaces Type-I ELMs
 - transport dominated by small, high frequency fluctuations
 - » Magnetic fluctuations increase at higher frequencies and shift to higher toroidal mode numbers (n = 1-3 core modes shift to n = -2 to -5 edge modes)
 - divertor surface temperature spikes reduced by at least a factor of 5
 - divertor particle flux impulses reduced by at least a factor of 8
 - stored energy impulses from the pedestal reduced by a factor of 3
- Suppression is resonant in: q95, shape, I-coil configuration, etc.
 - field errors have a significant impact on ELM character
- Good suppression is obtained in high triangularity (δ =0.76), ITER scenario 2 (δ =0.60) and lower single null (δ =0.37) shapes
- Looks promising for ITER ELM control

