Implications of Wall Recycling and Carbon Source Locations on Core Plasma Fueling and Impurity Content in DIII–D

¹M. Groth and ¹G.D. Porter

 ²J.A. Boedo, ³N.H. Brooks, ¹M.E. Fenstermacher, ³R.J. Groebner, ¹C.J. Lasnier, ¹W.H. Meyer, ²R.A. Moyer, ⁴L.W. Owen, ³T.W. Petrie, ¹M.E. Rensink, ⁴D.L. Rudakov, ⁵G. Wang, ⁶J.G. Watkins, ¹N.S. Wolf, ⁵L.Zeng

> ¹Lawrence Livermore National Laboratory, CA, USA ²University of California, San Diego CA, USA ³General Atomics, San Diego, CA, USA ⁴Oak Ridge National Laboratory, TN, USA ⁵University of Los Angeles, CA, USA ⁶Sandia National Laboratory, NM, USA

The 20th IAEA Conference Fusion Energy Conference Vilamoura, Portugal

November 1-6, 2004

Motivation: Poloidal distribution of core plasma fueling and impurity sources affect core plasma performance

- Fuel source distribution modifies height and width of H-mode density pedestal [Mahdavi et al. PoP 2003]
- Core power balance is sensitive to impurity content
- → Understanding needed to predict performance in future devices
- Three principal fueling channels:
 - Div. \rightarrow x-point region \rightarrow core
 - Div. \rightarrow neutral leakage \rightarrow core
 - Main walls \rightarrow core
- More efficient screening of divertor sources due to divertor geometry than main wall sources

Summary and methodology

- Poloidal distribution of fueling in L-mode and ELMy H-mode suggests that ...
 - Dominant core plasma fueling occurs near divertor X-point region due to recycling at the divertor targets
 - Significant neutral leakage from divertor into inner main SOL
 - Divertor target plates and divertor walls are dominant carbon sources
 - Carbon ion leakage from divertor into main SOL is the main transport mechanism that sets core carbon content
- Methodology
 - Detailed measurement of plasma parameters in main and divertor SOL, including 2–D emission distribution of D_α, CII, CIII
 - Data-constrained UEDGE/DEGAS2 2-D boundary modeling of deuterium neutrals and ions, and carbon transport

Extensive edge diagnostic system was employed to characterize divertor and main SOL

- Spatially resolved (△R_{mid}<1 cm) measurement of main SOL plasma parameter in outer main SOL
 - Thomson scattering
 - Reflectometer
 - Reciprocating probe
 - Edge charge-exchange
 - Tangential PMT array
- Divertor heat and particle flux profiles
 - Target Langmuir probes
 - Infra-red camera
- 2-D n_e and T_e distribution in outer divertor leg using Thomson scattering

Tangentially viewing cameras measured emission over a region of 85% of the poloidal cross-section

- Rad-hardened, 8bit CIDs
- Two intensified systems
- Visible: D_α, CII (514nm),
 CIII (465nm), filtered
- Reconstruction of 2–D poloidal distribution from image data

Divertor cameras span region from target plates to 60–80cm into main chamber, midplane camera spans inner and outer SOL (–70cm < Z < 60cm)

Lower–single null L–mode with n/n_{GW} = $0.2 \rightarrow 0.4$ optimized for diagnosis of divertor and main SOL

- Magnetic configuration
 - LSN, Bx\(\bar{B}\) into lower divertor
 - Inner gap 13cm, outer gap 9cm
 - 7cm flux surface intersects upper baffle limiter
 - 30cm strike point sweep for high spatial resolution
- Three density levels, varied shot-to-shot:
 - <n_e>=2.6x10¹⁹ m⁻³ (n/n_{GW}=0.24)
 - $< n_e >= 3.1 \times 10^{19} \text{ m}^{-3} (n/n_{GW} = 0.29)$
 - $< n_e > = 4.1 \times 10^{19} \text{ m}^{-3} (n/n_{GW} = 0.37)$

Model neutral transport with DEGAS2 on background plasma calculated by fluid edge code UEDGE

- UEDGE w/ classical drifts and carbon transport model, 0.94 $\leq \Psi_N \leq 1.15$
- Purely diffusive radial transport, D_{\perp} , χ_e , χ_i spatially constant
- BC: finite ion flux across outer grid, returned as neutrals
- BC: 5% wall pumping of neutrals outer UEDGE grid boundary 20cm above targets
- Carbon: C-P-S at target, C-S at outer UEDGE grid boundary [Eckstein JNM 1997, Davis JNM 1997]
- Launch DEGAS2 neutrals from target plate, CX-walk and reflections, plasma prescription for halo region

Modeling <u>lowest</u> density case: Experimental core and outer main SOL n_e and T_e were simulated in UEGDE using spatially const. D₁ = 0.65 m²/s and $\chi_e = \chi_i = 2.6 \text{ m}^2/\text{s}$

 Excellent agreement in experimental upstream n_e and T_e parameters measured by three independent techniques

UEDGE simulation match experimental total radiated power, divertor heat flux, and particle flux to divertor plates to within factor of 2

UEDGE simulation also agree with divertor Thomson n_e and T_e profiles in outer divertor leg

- Near-separatrix divertor Thomson data in common SOL obtained during strike point sweep: 1.002 ${\leq} \Psi_{\text{N}} {\leq}$ 1.008
- $T_{\rm e}$ just above target plate unusually low known problem with Thomson analysis, UEDGE calculated $T_{\rm e}$ at plate \to 2eV

Experimental 2–D intensity distribution of D_{α} , CII, and CIII is dominated by emission from the divertor

CII and CIII emission well off inner divertor target plates
 → Te of inner divertor plasma < 5eV, consistent w/ LP measurements

Inner midplane emission D_α, CII, and CIII peaks in region nearest to divertor X–point

$\langle ne \rangle (10^{19} \text{ m}^{-3})$	2.6	3.1	4.1
n/n _{GW}	0.24	0.29	0.37
$L_{\text{pol},D\alpha}(m)$	0.5	0.4	0.4
$L_{pol,CII}(m)$	0.3	0.4	0.3
L _{pol, CIII} (m)	0.3	0.3	0.5

- Poloidal fall-off length in inner midplane SOL ~ 0.3m - 0.5m
- Poloidal variation of inner midplane emission only weakly sensitive to core (and divertor) densities

Calculated D_α emission using UEDGE/DEGAS2 agrees quantitatively with measurements in lower divertor and inner midplane region

• Order-of-magnitude D_{α} emissivity matched, but far-SOL D_{α} overestimated by UEDGE/DEGAS2

UEDGE/DEGAS2 simulations indicate that core plasma is fueled by divertor X-point region and neutral leakage

- <u>DEGAS2</u>: Comparable fueling through X-point region and due to neutral leakage (42% divertor vs. 58% leakage)
- <u>UEDGE</u> alone (w/o neutral leakage in halo region): stronger X-point fueling (71% div. vs. 29% leakage)
- → Poloidal core fueling profile sensitive to <u>whether</u> and <u>how</u> halo plasma region is modeled

UEDGE-simulated CII and CIII distribution peaks well above inner divertor target plate \rightarrow due to significantly colder inner divertor plasma than outer

• Higher fraction of low-charge-state carbon in inner main SOL than in outer, poloidally extended toward plasma "top"

Small changes of diffusivities for carbon has strong effect on high-charge state density profiles

- Decreasing all (particle and heat) diffusivities by 35% changes n_{C6+} by an order of magnitude (!)
- Low-charge-state carbon emission more robust to these changes

MGe09: D₁ = 0.65m²/s, $\chi_e = \chi_i = 2.6m^2/s$, MGe14: D₁ = 0.38m²/s, $\chi_e = \chi_i = 1.5m^2/s$

Significant chemical sputtering of carbon on inner plate and divertor walls; outer plate region of net deposition

UEDGE predicts ion carbon leakage into inner main SOL above the X-point due to dominant $abla T_i$ force

- Net transfer of carbon from outer to inner wall region
- Flow reversal away from inner target in far-SOL
- Leakage for Z>−0.8m: ∇T_i force exceeds frictional drag from background plasma

Fueling and particle transport in medium–density ELMy H–mode in single and double–null configurations

- Beam-heated ELMy H-modes: H₈₉~2
- n/n_{GW}~0.4
- dRsep=0, ±4 cm
 outer gap=6 cm
- Vary direction of B_T, but keep I_P, to study effect of Bx∇B and ExB

${\rm D}_{\alpha}$ emission is strongest in primary divertor, in inner SOL it peaks nearest to primary X–point region

Poloidal fall-off lengths of D_{α} , CII, CIII emission in inner midplane SOL only weakly dependent on divertor geometry and direction of ion $Bx\nabla B$

- CIII emission more poloidally extended than ${\rm D}_{\alpha}$ and CII
- Emission from secondary X– point region

Effect of ExB drifts on D_{α} emission profiles stronger in the divertors than in inner midplane, qualitatively reproduced in UEDGE only when using drifts

- Effects due to ExB drifts observed in both upper and lower divertor
- Modeling of inner midplane profiles shows variation with drift direction, not observed in the experiments

Lower-single null ELMy H-mode with $n/n_{GW} = 0.7$ optimized for diagnosis of divertor and main SOL

Inner midplane D_{α} and CIII emission profiles strongly peaked toward lower divertor X-point

Strong core plasma fueling from inner divertor and main SOL region calculated by UEDGE

• Significant neutral leakage from inner divertor region: divertor X-point fueling 63% of total core fueling, 37% neutral leakage \rightarrow allowing leakage in halo region (DEGAS2) will increase this ratio

Order-of-magnitude agreement between measured and calculated upstream carbon density and CIII emission

- Steep gradient region in UEDGE in SOL, measured inside separatrix
- Outer midplane CIII emission matched inside separatrix, but not in main SOL

Main carbon source is inner divertor wall; inner and outer target plates are areas of net deposition

- Assessment of poloidal distribution of core fueling in DIII–D L–mode and ELMy H–mode plasmas using ...
 - Detailed measurements of plasma parameters in the divertor and main SOL, including 2–D emission distribution of D_α, CII, CIII
 - Data-constrained UEDGE/DEGAS2 2-D boundary modeling of deuterium neutrals and ions, and carbon transport
- Poloidal fueling distribution suggests that ...
 - Dominant core plasma fueling occurs near divertor X-point region due to recycling at the divertor targets
 - Significant neutral leakage from (colder) inner divertor into inner main SOL
- Divertor target plates and divertor walls are dominant carbon sources
- Carbon ion leakage from divertor into main SOL is the main transport mechanism that sets core carbon content

