Onset and Suppression of 2/1 NTM in DIII-D

by C.C. Petty in collaboration with

D.P. Brennan,¹ T.C. Luce, R.J. La Haye, D.A. Humphreys, J.R. Ferron, L.A. Gorelov, A.W. Hyatt, K. Kajiwara,² S.E. Kruger,³ L.L. Lao, J. Lohr, F.W. Perkins,⁴ P.A. Politzer, R. Prater, D.D. Schnack,⁵ E.J. Strait, A.D. Turnbull, M.R. Wade,⁶ and A.S. Welander

¹Massachusetts Institute of Technology, Cambridge, Massachusetts, USA ²Oak Ridge Institute for Science Education, Oak Ridge, Tennessee, USA ³Tex-X, Boulder, Colorado, USA ⁴Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA ⁵SAIC, San Diego, California, USA ⁶Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

Presented at 20th IAEA Fusion Energy Conference Vilamoura, Portugal

November 1, 2004

TEARING MODES REPRESENT THE PRESSURE LIMIT FOR BURNING PLASMA EXPERIMENTS

- The "spontaneous" 2/1 tearing modes considered here are classicallydestabilized as the ideal MHD stability limit is approached
 - These tearing modes become indistinguishable from (island seeded) neoclassical tearing modes after the initial linear growth phase
- Onset phase of spontaneous 2/1 tearing modes can be explained by modified Rutherford equation when the evolution of the linear drive is modelled correctly
 - NIMROD simulations confirm the importance of the linear drive
- Suppression of an existing 2/1 tearing mode has been achieved in DIII–D using electron cyclotron current drive to replace the "missing" bootstrap current in the island

PART I: THEORY OF "SPONTANEOUS" TEARING MODE ONSET IS CONFIRMED BY EXPERIMENTAL DATA

DITIONAL FUSION FACILITY SAN DIEGO

THEORY AND EXPERIMENT AGREE β_N AT FIXED ISLAND WIDTH INCREASES WITH d β_N /dt

Results support hypothesis that Δ' is increasing with β in time, consistent with theoretical model

Polarization parameter is fitted to find $\beta_{\rm N}$ vs. d $\beta_{\rm N}/dt$ at mode onset

MODEL REPRODUCES LULL IN ISLAND GROWTH RATES OBSERVED IN EXPERIMENT

MINIMUM RATE OF HEATING FOR TEARING MODE ONSET QUALITATIVELY AGREES WITH EXPERIMENT

• Island causes transport, reducing β and Δ' , resulting in a lower limit in d β /dt

DEPENDENCE OF β (w) AND γ (w) ON HEATING RATE CAPTURED BY NIMROD EXTENDED MHD SIMULATIONS

PART II: SUPPRESSION OF 2/1 TEARING MODE USING ECCD TO REPLACE "MISSING" BOOTSTRAP CURRENT

ECCD aimed at q = 2 surface

Island shrinkage optimized when ECCD is centered on 2/1 island

2/1 mode suppressed in hybrid discharge with β_N well above ITER baseline scenario

"Target lock" algorithm uses small, rapid variations in B_T to optimize suppression

2/1 mode suppressed in hybrid discharge with β_N well above ITER baseline scenario

"Target lock" algorithm uses small, rapid variations in B_T to optimize suppression

2/1 mode suppressed in hybrid discharge with β_N well above ITER baseline scenario

"Target lock" algorithm uses small, rapid variations in B_T to optimize suppression

2/1 mode suppressed in hybrid discharge with β_N well above ITER baseline scenario

"Target lock" algorithm uses small, rapid variations in B_T to optimize suppression

CO-CURRENT DRIVE IS NECESSARY TO STABILIZE 2/1 MODE

• Slow B_T scan sweeps 3.0 MW of ECCD past q=2 surface

MODELLED ISLAND WIDTH FOR CO/RADIAL/COUNTER INJECTION SEPARATES EFFECTS OF ECCD AND Δ' MODIFICATION

MODELLED ISLAND WIDTH FOR CO/RADIAL/COUNTER INJECTION SEPARATES EFFECTS OF ECCD AND Δ' MODIFICATION

$\begin{array}{c} \textbf{CO-ECCD MAKES} \ \Delta' \ \textbf{MORE NEGATIVE, WHILE} \\ \textbf{COUNTER-ECCD HAS OPPOSITE EFFECT} \end{array}$

● Although △´ modification is significant, direct current drive in island is main reason for 2/1 tearing mode suppression

SUMMARY

- Time evolution of linear drive is the key to understanding the growth phase of the 2/1 tearing mode
- Three physics predictions about the onset phase of the 2/1 tearing mode have been experimentally verified
 - Increase in growth rate with higher β
 - Early Iull in island growth
 - Minimum heating rate for onset of 2/1 mode
- Complete suppression of 2/1 NTM has been achieved using ECCD at the q=2 surface for β_N = 2.8 (β = 3.5%) at 90% of the ideal no-wall stability limit
- ECCD also appears to modify Δ' significantly in a direction that complements the direct current drive effect
- Future experiments will apply early ECCD to avoid 2/1 mode onset

