Disruption Mitigation using Noble Gas Jet Injection in DIII-D

E. Hollmann¹, T. Jernigan², M. Groth³, D. Whyte⁴, D. Gray¹, D. Brennan⁵, N. Brooks⁶, T. Evans⁶, D. Humphreys⁶, C. Lasnier³, R. Moyer¹, A. McLean⁷, P. Parks⁶, V. Rozhansky⁸, D. Rudakov¹, E. Strait⁶, W. West⁶, and the DIII-D team.

¹University of California-San Diego, ²Oak Ridge National laboratory, ³Lawrence Livermore National Laboratory, ⁴University of Wisconsin-Madison,⁵ Massachusetts Institute of Technology, ⁶General Atomics, ⁷University of Toronto, ⁸St. Petersburg State University

Nov. 2004 20th IAEA FEC 2004

EX/10-6Rc

Disruption Mitigation on Tore Supra

G. Martin, F. Sourd, F. Saint-Laurent, L. G. Eriksson, and the Tore Supra team

CEA / Cadarache

Nov. 2004 20th IAEA FEC 2004

Euratom-CEA

EX/10-6Rb

Disruption Mitigation Experiments in the JT-60U Tokamak

M. Bakhtiari¹, Y. Kawano¹, H. Tamai¹, G.J. Kramer², A. Isayama¹,
Y. Kamiya¹, R. Yoshino¹, Y. Miura¹, Y. Kusama¹, H. Takenaga¹,
T. Nakano¹, H. Kubo¹, Y. Nishida³, and the JT-60 Team¹

¹Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Japan ²Princeton Plasma Physics Laboratory, USA. ³Utsunomiya University, Japan

> Nov. 2004 20th IAEA FEC 2004

Overview of disruption mitigation

- Goal: minimize damage to walls of ITER during disruptions
 - A. Thermal quench
 - Conducted heat loads
 - B. Current quench
 - Induced and vessel halo currents
 - Runaway electrons
- Two steps to disruption mitigation
 - A. Detection/triggering
 - B. Radiative shutdown scheme
 - Killer pellet (ASDEX, JT-60U, DIII-D, T-10, etc.)
 - Gas jet (DIII-D, Tore Supra, JT-60U, etc.)

focus of this presentation

Main results

Massive gas jet shutdown works well in present tokamaks.

- Low conducted heat loads, low halo currents, and low runaway electron signature seen in DIII-D.

- Large reduction in runaway signature over normal disruptions observed in Tore Supra.

- Reduced runaway signature using mixed-species jets observed in JT-60U.

• Predicting performance of gas jet in ITER is still work in progress.

- Getting impurity neutrals into center of ITER challenging.

- However, mitigation can be good even without neutrals penetrating to center.

Variety of gas jets tested

Mide range in gas jet 107840 3000.00 experiments worldwide Ne Machine Gas V DIII-D Ne,Ar Tore He Supra Ar,Kr, Xe,H₂ **JT-60U**

 $N_{0,inj}$ [/m³]

plasma

2e21

3e21

6e19

 $[/m^3]$

plasma

3e19

3e19

1e19

Open jet (2000-2003)

- Fast (~1 ms) rise time.
- Aimed at plasma top.
- First demonstration of good mitigation characteristics.

Directed jet (2004)

- Slower (~ 3 ms) rise time.
- Aimed at plasma center.
- Jet modified to better study neutral penetration.

Conducted heat loads reduced

90% of thermal energy radiated away with gas jet \rightarrow low heat conduction to walls.

100% main chamber _____ radiation \rightarrow low divertor heat loads.

4× reduction in halo current forces on vessel

- 2× reduction in halo 0.2 currents when jet sent into vertically unstable plasma.
- Complete
 disappearance of
 toroidal peaking in
 halo currents.

Total poloidal halo current

EX/10-6Ra

Runaway electrons can cause EX/10-6Rc localized wall damage

Visible light photograph of runaway beam striking wall.

Wall damage caused by runaways. Serious concern for ITER.

JE1

Runaway avalanche suppressed with sufficient impurity injection

 To avoid runaway amplification in ITER, gas jet should deposit impurity densities > 10²²/m³ (~0.4 mbar)

He jet terminates discharge with low runaway generation

- Runaways produced during normal disruptions in Tore-Supra.
- Photo-neutrons give indication of MeV runaway electrons striking wall.
- Helium gas jet terminated plasmas have much lower runaway signature than normal disruptions.

(directed Ar jet)

NATIONAL FUSION FACILIT

SAN DIEGO

#117473

Impurity ions move rapidly toward center of plasma

- At start of thermal quench, impurity ions at edge of plasma.
- Fast inward transport of impurity ions during thermal quench, ending in large radiation spike.

Onset of central T_e collapse occurs without impurities

• n_e inversion suggests impurities at r/a > 0.7 during TQ.

• Increasing MHD when cold front at q=2.

 Increasing MHD coincides with core T_e collapse; could cause fast heat transport.

EX/10-6Rc Thermal collapse shows two time scales

Increasing gas jet pressure increases impurity propagation rate

SAN DIEGO

• Higher jet pressures give faster cold front propagation.

- Argon slower than Neon, suggests mass dependence in impurity transport.
- Propagation rates
 ³ up to ~ neutral sound speed obtained.

Modifying gas jet geometry EX/10-6Ra **affects impurity propagation rate**

SAN DIEGO

• Directed jet has slower cold front propagation rate than open jet.

Conclusions

- Massive gas jet shutdown works in present devices.
 - Low conducted power to wall.
 - Low halo currents.
 - Low runaway electrons.
- Improving understanding of impurity dynamics in present devices.

- Present work suggests penetration of neutrals to core not necessary for good mitigation.

- Variation of thermal collapse rate with jet pressure and shape suggests jet can be tailored to give desired TQ time.

• Extrapolation to ITER work in progress.

- Need more experiments, better diagnostics, and crossmachine comparisons.

- Need integrated modeling (impurity dynamics + MHD).

EX/10-6Ra

Low divertor heat loads

- Gas jet gives divertor heat loads lower than all types of disruptions.
- Beta-limit disruption gives highest conducted heat loads.

(heat fluxes averaged over thermal quench)

EX/10-6Ra

Thermal quench MHD low-order

- Wall magnetic signals usually low order: well-fit by n=1, m = 1, 2.
- Rise time of MHD fast (< 1 ms), suggesting plasma near ideal limit.

• Mixing of impurities/heat in/out of core during fast 350 MHD.

HXR emission proportional to EX/10-6Rb **runaway growth rate in JT-60U**

Runaway electron avalanche growth rates and the HX-ray emissions are lower with Krypton and they are higher with argon.

In the Kr case E_{res}/E_c is low which leads to low growth rate: $\gamma_r \propto \frac{1}{(\overline{Z}+1)} \frac{E_{res}}{E_c} \left(\frac{E_{res}}{E_c} - 1\right)$

 $E_c [V/m]=0.12n_{eT} [m^{-3}]/10^{20}$, and $E_{res}=V_{res}/2\pi R$. Low V_{res} and high n_{eT} cause a low v in krypton case. Note: $n_{T}=n_{TT}+n_{z}Z$, Z=atomic number.

Enhanced loss of runaways by EX/10-6Rb Impurity pellet injection in JT-60U

Neon ice pellets (2.1mmx2.1mm, ~700 m/s, 5 Hz, LFS) are injected into a post-disruption runaway plasma

Runaways reduced with gas jet over pellet injection

Current quench x-ray signals from runaways

• Less runaways are created with gas jet than with pellets, consistent with more impurities.

- Argon causes more runaways than neon, consistent with T_e lower for Argon.
- Scatter from MHD and/or variation in strike location of runaways ?