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Overview of disruption mitigation
•  Goal: minimize damage to walls of ITER during

disruptions
A. Thermal quench

- Conducted heat loads
B. Current quench

- Induced and vessel halo currents
- Runaway electrons

• Two steps to disruption mitigation
 A. Detection/triggering

B. Radiative shutdown scheme
- Killer pellet (ASDEX,JT-60U,DIII-D,T-10,etc.)
- Gas jet (DIII-D,Tore Supra,JT-60U,etc.)

focus of this presentation



Main results
•  Massive gas jet shutdown works well in present

tokamaks.

- Low conducted heat loads, low halo currents, and low
runaway electron signature seen in DIII-D.

- Large reduction in runaway signature over normal
disruptions observed in Tore Supra.

- Reduced runaway signature using mixed-species jets
observed in JT-60U.

• Predicting performance of gas jet in ITER is still
work in progress.
- Getting impurity neutrals into center of ITER challenging.

- However, mitigation can be good even without neutrals
penetrating to center.

 



Variety of gas jets tested

Open jet (2000-2003) Directed jet (2004)

- Slower (~ 3 ms) rise time.
- Aimed at plasma center.
- Jet modified to better
study neutral penetration.

- Fast (~1 ms) rise time.
- Aimed at plasma top.
- First demonstration of
good mitigation
characteristics.
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90% of thermal energy
radiated away with gas
jet → low heat
conduction to walls.

100% main chamber
radiation → low divertor
heat loads.

Conducted heat
loads reduced

DIII-D
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• 2× reduction in halo
currents when jet sent
into vertically unstable
plasma.

• Complete
disappearance of
toroidal peaking in
halo currents.

4× reduction in halo current forces
on vessel

DIII-D
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Visible light photograph
of runaway beam striking
wall.

Wall damage caused by
runaways. Serious
concern for ITER.

Runaway electrons can cause
localized wall damage

Tore Supra

JET

TORE SUPRA
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Runaway avalanche suppressed
with sufficient impurity injection

• To avoid runaway amplification in ITER, gas jet should
deposit impurity densities > 1022/m3 (~0.4 mbar)

KPRAD (0D) simulationsRE gain ~ exp(G)



• Runaways produced
during normal disruptions
in Tore-Supra.

• Photo-neutrons give
indication of MeV runaway
electrons striking wall.

• Helium gas jet terminated
plasmas have much lower
runaway signature than
normal disruptions.

He jet terminates discharge with
low runaway generation

Tore Supra

TORE SUPRA
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Kr + H2 gas jet terminates discharge
with no runaways striking wall

Kr+H2   Xe+H2   Ar+H2 Kr   Xe   Ar

JT-60UJT-60U
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At start of core thermal
collapse, jet neutrals (Ar) and
ions (Ar+) at edge of plasma.

Ar+ ions seen to stream along
edge field lines.

Neutrals ionize at plasma edge

(directed Ar jet)
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• At start of thermal
quench, impurity ions at
edge of plasma.

• Fast inward transport of
impurity ions during
thermal quench, ending
in large radiation spike.

Impurity ions move rapidly toward
center of plasma

(open Ne jet)

DIII-D
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• ne inversion suggests
impurities at r/a > 0.7
during TQ.

• Increasing MHD when
cold front at q=2.

• Increasing MHD
coincides with core Te

collapse; could cause
fast heat transport.

Onset of central Te
collapse occurs

without impurities

(directed Ne jet)

DIII-D
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Final core Te

collapse very rapid.

Initial cold front
propagation slower
than He sound
speed.

Thermal collapse shows two
time scales

Tore Supra

• DIII-D thermal collapse
qualitatively similar.
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Increasing gas jet pressure increases
impurity propagation rate

• Higher jet pressures
give faster cold front
propagation.

• Argon slower than
Neon, suggests mass
dependence in
impurity transport.

• Propagation rates
up to ~ neutral sound
speed obtained.
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Modifying gas jet geometry
affects impurity propagation rate

• Directed jet has
slower cold front
propagation rate
than open jet.

DIII-D
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Conclusions
•  Massive gas jet shutdown works in present devices.

- Low conducted power to wall.
- Low halo currents.
- Low runaway electrons.

• Improving understanding of impurity dynamics in
present devices.
- Present work suggests penetration of neutrals to core not
necessary for good mitigation.

- Variation of thermal collapse rate with jet pressure and
shape suggests jet can be tailored to give desired TQ time.

• Extrapolation to ITER work in progress.
- Need more experiments, better diagnostics, and cross-
machine comparisons.

- Need integrated modeling (impurity dynamics + MHD).

 



• Gas jet gives divertor
heat loads lower than
all types of disruptions.

• Beta-limit disruption
gives highest
conducted heat loads.

(heat fluxes averaged over
thermal quench)

Low divertor
heat loads
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• Wall magnetic signals
usually low order: well-fit by
n=1, m = 1, 2.

• Rise time of MHD fast (< 1
ms), suggesting plasma
near ideal limit.

• Mixing of impurities/heat
in/out of core during fast
MHD.

Thermal quench MHD low-order

(open Ne jet)
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Data selected In RE phase

Runaway electron avalanche growth rates and the HX-ray emissions are
lower with  Krypton and they are higher with argon.

In the Kr case Eres/Ec is low which leads to low
growth rate:

Ec [V/m]=0.12neT [m-3]/1020, and Eres=Vres/2πR. Low Vres and high neT cause a
low γr in krypton case. Note: neT=nH+nzZ, Z=atomic number.
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Neon ice pellets (2.1mmx2.1mm, ~700 m/s, 5 Hz, LFS) are
injected into a post-disruption runaway plasma

Bulk electron density increased --> pellet deposited
Photo-neutron increased --> loss of runaways to wall
Current decay time shortened:from ~3 s to ~1.5 s
No large MHD activities
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• Less runaways are
created with gas jet than
with pellets, consistent
with more impurities.

• Argon causes more
runaways than neon,
consistent with Te lower
for Argon.

• Scatter from MHD
and/or variation in strike
location of runaways ?

Runaways reduced with gas jet over
pellet injection
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