ELMs and Constraints on the H-Mode Pedestal: A Model Based on Peeling-Ballooning Modes

P.B. Snyder,¹ H.R. Wilson,² J.R. Ferron,¹ L.L. Lao,¹ A.W. Leonard,¹ D. Mossessian,³ M. Murakami,⁴ T.H. Osborne,¹ A.D. Turnbull¹, X.Q. Xu⁵

¹General Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA
²EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon UK
³Massachusetts Institute of Technology PSFC, Cambridge, Massachusetts 02139, USA
⁴Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
⁵Lawrence Livermore National Laboratory, Livermore, California 94550, USA

19th IAEA Fusion Energy Conference
Lyon, France, 14-20 October 2002
Pedestal & ELMs Key to Plasma Performance

- Both theory and experiment indicate a strong dependence of core confinement, and therefore Q on the pedestal height (p_{ped}, T_{ped})

- ELM characteristics strongly impact divertor and wall heat load constraints (large Type I ELMs may not be tolerable in Burning Plasma devices)

Goal is predictive understanding of physics controlling pedestal height and ELM characteristics \Rightarrow combination of high pedestal and tolerable ELMs
Pedestal Stability Studies Including Current Lead to New Understanding of ELMs and Pedestal Physics

- Peeling-ballooning mode stability leads to model of ELMs and pedestal constraints
 - Quantitative pedestal stability limits and mode structures

- Model Verified Against Experiment in Two Ways
 - Direct comparisons to experiment
 - Use of model equilibria to assess pedestal limits in current and future devices

- Summary and Future Work

UKAEA Fusion
WORKING WITH EUROPE

DIII-D
NATIONAL FUSION FACILITY
SAN DIEGO

GENERAL ATOMICS
Peeling-Ballooning Stability Picture

- Two Principal MHD Instabilities in the Pedestal
 - Ballooning Modes (pressure driven)
 - External Kink or “Peeling Modes” (current driven)

- Bootstrap Current Plays a Complex Role
 - Drives Peeling Modes
 - Opens 2nd stability access to ballooning modes
Peeling-Ballooning Stability Picture

- Two Principal MHD Instabilities in the Pedestal
 - Ballooning Modes (pressure driven)
 - External Kink or “Peeling Modes” (current driven)
- Bootstrap Current Plays a Complex Role
 - Drives Peeling Modes
 - Opens 2nd stability access to ballooning modes
- Peeling and Ballooning modes couple at finite n
Peeling-Ballooning Stability Picture

- Two Principal MHD Instabilities in the Pedestal
 - Ballooning Modes (pressure driven)
 - External Kink or “Peeling Modes” (current driven)

- Bootstrap Current Plays a Complex Role
 - Drives Peeling Modes
 - Opens 2nd stability access to ballooning modes

- Peeling and Ballooning modes couple at finite n

- Intermediate wavelength coupled peeling-balloonning mode often most unstable
 - High n’s second stable or FLR stabilized, low n’s stabilized by line bending
 - High-n ballooning alone not sufficient

- Quantitative stability limits depend sensitively on plasma shape, collisionality, pedestal width, q, etc., and must be tested at multiple wavelengths
 - Need an efficient tool
ELITE is a Highly Efficient 2D MHD Code for $n>\sim 5$

ELITE is a 2D eigenvalue code, based on ideal MHD (amenable to extensions):
- Generalization of ballooning theory:
 1) incorporate surface terms which drive peeling modes
 2) retain first two orders in $1/n$ (treats intermediate $n>\sim 5$)
- Makes use of poloidal harmonic localization for efficiency
- Successfully benchmarked against GATO and MISHKA

[H.R. Wilson, P.B. Snyder et al Phys Plas 9 1277 (2002); P.B. Snyder, H.R. Wilson et al Phys Plas 9 2037 (2002).]
Different n’s and Mode Structures Predicted in Different Regimes

Series of JET-like equilibria with self-consistent J_{bs}, high n 2nd access

Edge stability limits scanned with ELITE ($6<n<30$)

$n=13$ peeling
Small ELMS

$n=8$, coupled peeling-ballooning mode
Large ELMS

$n=6$ marginal

Range of unstable n

$\beta_N \propto p_{ped}$

Higher n modes unstable
Different Types of ELM Cycles can be Envisioned

- ELMs triggered by peeling-ballooning modes, ELM size correlates to depth of most unstable mode and to location in parameter space.
- Pressure rises up on transport time scale between ELMs, current rises to steady state value more slowly.
- Predict changeover in ELM behavior when $J_{\text{ped}} < J_{\text{peel}}$ ⇒ strong density and shape dependence.
Verification of Peeling-Ballooning Mode Model for ELMs: Case Study in DIII-D

- \(n=10 \) growth rate attains significant value just before ELM observed
- Predicted radial mode width consistent with ELM affected area
 - Both extend beyond pedestal
- Mode localized on outboard side, consistent with observations in divertor balance experiments
Observed Variation with Density Consistent with Model

- Three DIII-D shots with varying density studied
- In all 3 cases, peeling-ballooning modes are unstable with significant growth rate just before ELM, even though pedestal height is decreasing with density
 - Consistent with peeling-ballooning modes as ELM trigger
- As density increases, most unstable mode moves to shorter wavelengths, and radial width of mode decreases
 - Due to decreasing bootstrap current and narrowing pedestal
 - Expect smaller ELMs at high density, as observed [see Leonard EX/P3-06]
Direct Comparisons Consistent on Multiple Tokamaks

- **Alcator C-Mod**
 - ELM-free and EDA shots are peeling-ballooning stable
 - Peeling-Ballooning modes consistently unstable just before ELMs

 [See D. Mossessian EX/P5-04 Saturday morning]

- **JT-60U**
 - Peeling ballooning modes unstable before ELMs
 - Broader mode structures in “Giant ELM cases”

[See N.Oyama EX/S1-1, Y. Kamada EX/P2-04]
Studies of Model Equilibria Useful for Predicting Trends in Present and Future Devices

- Direct experimental comparisons rigorously test the model, but for prediction of pedestal trends it is useful to conduct pedestal stability analysis on series of model equilibria
 - Compare to observed trends on present devices
 - Predict pedestal height as a function of width, shape, etc in future devices

Sample ITER profiles

- Model equilibria, match global parameters (B_t, I_p, R, a, κ, δ, $\langle n_e \rangle$)
- Current profile aligned to Sauter collisional bootstrap model in the pedestal
- Width (Δ) is an input: at each Δ, T_{ped} is increased until n=8-40 stability bounds are crossed
Trends in Existing Pedestal Database Can Be Understood Using Stability of Model Equilibria

- Trends with density and triangularity calculated using series of model equilibria, and compared to database
 - Inputs are B_t, I_p, R, a, κ, δ, $\langle n_e \rangle$, Δ

- Strong increase in pedestal height with triangularity is due to opening of second stability access
 - Bootstrap current plays a key role here. Without it (dashed line) second stability is not accessed at high n and strong δ trend not predicted

- Trends with both density and triangularity accurately reproduced: indicates both that pedestal is MHD limited and that model equilibria are sufficiently accurate
 - Encourages use of this method as a predictive tool for future devices
Prediction of ITER Pedestal Constraints

- High n modes limiting at narrow widths, go second stable at wider widths
- Pedestal height increases with width, but not linearly ($\sim \Delta^{2/3}$)
- Reaches adequate pedestal height for predicted high performance in observed range of Δ/a
 - Increase height by optimizing δ, n_e, including ω_* effects
 - Scaling of pedestal width remains a key uncertainty [Osborne CT-3]
ELM simulated in BOUT has peeling-ballooning structure

- Additional physics effects (eg ω_*, sheared rotation) need to be considered
- Nonlinear BOUT code with current used to simulate peeling-ballooning modes
 - Basic picture of instability remains intact
Summary

- **Pedestal current plays an important dual role in stability**
 - Drives peeling, 2nd access for ballooning
 - Peeling-Ballooning coupling, intermediate n’s often limiting mode

- **New tools (ELITE) allow efficient stability calculation for experimental equilibria over full relevant spectrum of n**

- **Model of ELMs and constraints on the pedestal developed based on peeling-balloonning**
 - Peeling-balloonning modes as ELM trigger, mode structure correlates to ELM depth
 - Quantitative prediction of p', J limits; T_{ped} limits using self-consistent J_{bs}
 - Finite n modes sensitive to pedestal width as well as gradient

- **ELM model in agreement with experiment**
 - Observed ELM onset consistent with model in multiple tokamaks
 - Pedestal and ELM variation with density quantitatively modeled
 - Predicted trends with triangularity and collisionality consistent, projections made for burning plasmas, pedestal width remains a key uncertainty

- **Nonlinear simulations of the boundary region in progress, impact of current included**
 - Basic picture of instability remains intact
 - Ongoing work: more complete physics picture and dynamical models