Resistive Wall Stabilization of High Beta Plasmas in DIII-D

by E.J. Strait

for J. Bialek,* I.N. Bogatu,[‡] M.S. Chance,[†] M.S. Chu, D.H. Edgell,[‡] A.M. Garofalo,* G.L. Jackson, T.H. Jensen, L.C. Johnson,[†] J.-S. Kim,[‡] R.J. La Haye, G.A. Navratil,* M. Okabayashi,[†] H. Reimerdes,* J.T. Scoville, A.D. Turnbull, M.L. Walker, and the DIII–D Team

> *Columbia University. [‡]FARTECH, Inc. [†]Princeton Plasma Physics Laboratory.

Presented at 19th IAEA Fusion Energy Conference Lyon, France

STABLE OPERATION WELL ABOVE THE NO-WALL β LIMIT HAS BEEN SUSTAINED FOR >300 WALL TIMES

• Resistive wall mode stabilized by plasma rotation

258-02/EJS/wj

- Many "advanced tokamak" scenarios rely on wall stabilization of ideal kink modes
 - Perfectly conducting wall extends stability limits
 - Finite conductivity wall allows a slowly growing resistive wall mode (RWM)
- Two approaches to providing stability with a resistive wall
 - Plasma rotation (requires $\Omega \ge 0.02 \Omega_A$)
 - Active feedback stabilization (possible because $\gamma_{RWM} \sim \tau_{wall}^{-1}$)
- Key discovery: resonant plasma response to non-axisymmetric field enhances rotational drag
 - Feedback can be applied to minimizing "error field amplification"
- DIII–D experiments show that ideal kink modes can be stabilized by a resistive wall and plasma rotation, as $\beta \rightarrow$ ideal-wall stability limit
- Modeling also predicts high- β stabilization with internal control coils
 - Needed if rotation frequency is not sufficient in a burning plasma

TH/P3-10: M.S. Chu, "Modeling of Feedback and Rotation Stabilization"

SAN DIEGO

SAN DIEGO

NON-AXISYMMETRIC "C-COIL" IS USED FOR ERROR FIELD CORRECTION AND RWM FEEDBACK CONTROL

- Six midplane coils (C-coil) connected in three pairs for n=1 control
- External and internal saddle loops measure δB_r
- Poloidal field probes measure δB_p with reduced coupling to the control coils

VALEN 3-D FEEDBACK CONTROL MODEL PREDICTS IMPROVED β LIMIT WITH EXISTING 6 COIL SET

- External B_r sensors in basic "smart shell" control algorithm allow 20% increase towards ideal wall β_N limit
- Internal B_p sensors allow 50% increase towards ideal wall beta
 - Faster time response
 - Decoupled from C-coil

INTERNAL B_p SENSORS IMPROVE ACTIVE CONTROL OF THE RWM

- Stable duration and $\beta/\beta^{no-wall}$ increase with internal B_p sensors
- Internal B_p sensors stabilize RWM with larger open-loop growth rate γ_0
- Measured open-loop growth rate is consistent with VALEN prediction

PLASMA ROTATION STABILIZES THE RWM

 Below a critical rotation frequency, RWM becomes unstable

- Critical rotation frequency varies as $\Omega_{\rm crit} \sim 0.02 \ \Omega_{\rm A}$
 - Magnitude consistent with MHD predictions (Bondeson & Ward, 1994)
 - Data could also fit a sound speed scaling

INCREASING n=1 ERROR FIELD AMPLITUDE CAUSES DECAY OF PLASMA ROTATION

• Static n=1 error field is varied with the C-coil

258-02/EJS/wj

ROTATION-STABILIZED PLASMA HAS A RESONANT RESPONSE TO EXTERNAL MAGNETIC PERTURBATIONS

SAN DIEGO

258-02/EJS/wj

FEEDBACK CONTROL USING INTERNAL B_p SENSORS MAINTAINS WALL STABILIZATION UP TO β_{N} ~ TWICE THE NO-WALL LIMIT

106530

258-01/EJS/wj

FEEDBACK CONTROL USING INTERNAL B_p SENSORS MAINTAINS WALL STABILIZATION UP TO β_{N} ~ TWICE THE NO-WALL LIMIT

• Improvement is due to feedback-driven "dynamic error correction" in this case

SAN DIEGO

106530 106532

FEEDBACK CONTROL USING INTERNAL B_p SENSORS MAINTAINS WALL STABILIZATION UP TO β_{N} ~ TWICE THE NO-WALL LIMIT

- Improvement is due to feedback-driven "dynamic error correction" in this case
 - Pre-programming the error correction currents to match feedback-controlled currents gives a similar result

106530 106532 106534

REDUCED ERROR FIELDS \Rightarrow SUSTAINED ROTATION \Rightarrow RELIABLE OPERATION ABOVE THE NO-WALL LIMIT

- Feedback control of NBI power keeps β_N below stability limit (107603)
- No other large scale instabilities encountered (NTM, n=2 RWM, ...)

REDUCED ERROR FIELDS \Rightarrow SUSTAINED ROTATION \Rightarrow RELIABLE OPERATION ABOVE THE NO-WALL LIMIT

ERROR CORRECTION OPTIMIZATION ALLOWS SUSTAINED HIGH BETA IN ADVANCED TOKAMAK PLASMAS

- Dynamic error correction by feedback control sustains high plasma rotation and high beta
- Negative central shear plasma with 85% noninductive current (65% bootstrap current), and β_T ≥ 4%
- Large (2,1) tearing mode limits duration of high performance phase

- DIII-D experiments show that ideal kink modes can be stabilized at high beta by a resistive wall, with sufficient plasma rotation
- Resonant response of a marginally stable RWM to non-axisymmetric fields can cause strong damping of rotation
- Feedback control can improve RWM stability in two ways
 - Minimization of the n=1 error field to sustain rotation
 - Direct stabilization at rotation below the critical frequency
- RWM stabilization has improved plasma performance
 - β significantly above the no-wall MHD stability limit sustained for 1.5 s (>300 τ_w)
 - $-\beta$ up to twice the no-wall limit, approaching the ideal-wall stability limit
 - Stable operation at β_N up to 4.2, with 85% noninductive current and $\beta \sim 4\%$

INTERNAL CONTROL COILS WILL BE AN EFFECTIVE TOOL FOR PURSUING BOTH ACTIVE AND PASSIVE STABILIZATION OF THE RWM

- Off-midplane coils allow better matching to poloidal spectrum of error field or RWM
- Feedback stabilization is calculated to open high beta wall-stabilized regime to plasma without rotation (may be important for burning plasma)

12-coil internal set available for experiments 2003

