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DIII–D ADVANCED TOKAMAK PROGRAM GOAL

● The DIII–D AT research program is developing the scientific basis
for advanced operating modes in order to enhance the attractiveness
of the tokamak as an energy producing system

● This requires optimizing  for
— High power density (high ββββ = 2 µµµµo 〈〈〈〈p〉〉〉〉/B2)
— High ignition margin (high energy confinement time ττττE)
— Steady-state operation with low recirculating power

(high bootstrap fraction)

● Key issues in optimization are
— Active MHD stability control
— Current profile control
— Pressure profile control
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● Substantially broadened the MHD stable operating space
 — Rotational stabilization of resistive wall modes yielding 
  βN = βN (ideal wall) = 2 βN (no wall)
 — Increased β by 60% via stabilization of (3,2) neoclassical tearing mode 
  with ECCD in sawtoothing plasmas
 — First stabilization of (2,1) neoclassical tearing mode using ECCD

● Developed plasma control tools
 — First integrated AT discharges with current profile control using ECCD
 — Pressure and density profile control with ECH and ECCD

● Demonstrated an improved, high q95 (>4) operating scenario for ITER

● Achieved solutions to key burning plasma issues
 — No ELM-produced, pulsed divertor heat load in QH–mode plasmas
 — Small heat and particle loads at inner divertor strike points in balanced 
  double-null divertors
 — Disruption mitigation via massive gas puff

SUBSTANTIAL PROGRESS SINCE IAEA 2000

255-02/KB/JY

We have made progress since the last IAEA meeting in developing 
the building blocks needed for advanced operating modes:

~
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 MHD STABLE TOKAMAK OPERATING SPACE APPROXIMATELY 
DOUBLED BY SUPPRESSION OF EXTERNAL KINK INSTABILITY
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● Key: sustainment of plasma rotation
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— Theoretically predicted (Bondeson and Ward, 1994)
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WALL STABILIZATION OF EXTERNAL KINK VIA
PLASMA ROTATION BROADENS OPERATING SPACE

● Wall stabilization of the external kink is possible via stabilization of the resistive
wall mode (RWM) by plasma rotation
— Duration in previous experiments limited by the slowing of plasma rotation

● New Discovery: Rotation slowing at ββββ above the no-wall limit is a consequence
of “resonant field amplification” (RFA) [A. Boozer, Phys. Rev. Lett. 86 (2001)]

● New Discovery: Reduction of the non-axisymmetric (error) fields enables
continued plasma rotation at ββββ above the no-wall limit

⇒⇒⇒⇒ Reduced error field
⇒⇒⇒⇒ Sustained plasma rotation

⇒⇒⇒⇒ Stable operation well above the no-wall ββββ limit (up to ideal-wall limit)
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● Six midplane coils (C–coil) connected in three pairs for n=1 control
● External and internal saddle loops measure δBr
● Poloidal field probes measure δBp with reduced coupling to the control coils

NON-AXISYMMETRIC “C-COIL” AND MAGNETIC 
FIELD SENSORS ARE USED FOR RWM AND RFA 

MINIMIZATION BY FEEDBACK CONTROL

258–02/EJS/wj
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 A MAGNETIC FEEDBACK SYSTEM COMBINED WITH ROTATIONAL 
STABILIZATION CAN PROVIDE A PATH TO IDEAL-WALL βN LIMIT
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Increasing 
Rotation

 A MAGNETIC FEEDBACK SYSTEM COMBINED WITH ROTATIONAL 
STABILIZATION CAN PROVIDE A PATH TO IDEAL-WALL βN LIMIT
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Increasing 
Rotation

 A MAGNETIC FEEDBACK SYSTEM COMBINED WITH ROTATIONAL 
STABILIZATION CAN PROVIDE A PATH TO IDEAL-WALL βN LIMIT
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Ideal-Wall βN Limit 

● βN = βN (ideal wall) = 2 βN (no-wall) (GATO-code) 

● MHD at collapse grows on ideal-kink time scale

● Rotational stabilization also possible with preprogramed 
 C–coil current
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— Detailed feedback control of C–coil not necessary for 
 rotational stabilization

∼ ∼
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● βN H89 ≥ 10 for 680 ms (4τE)

● β = 4.2%, βτE = 0.66% s, βp = 2

● Bootstrap fraction 65%

● Total non inductive fraction 85%

● Duration limited by drop in qmin 
 leading to onset of 2/1
 neoclassical tearing mode (NTM)

RWM STABILIZATION BY ROTATION ALLOWS HIGH βN H89 
OPERATION IN ADVANCED TOKAMAK PLASMAS

255-02/KB/JY
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— Motivates work on current drive 
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● βN = 1.5 βN (no-wall)

∼
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βN RAISED 60% AFTER ECCD SUPPRESSION OF m/n = 3/2 NTM
● Location of ECCD optimized in real time to minimize NTM amplitude

—    Location held fixed when amplitude is zero
—    Mode reappears as q = 3/2 moves radially by 2 cm off ECCD location 

n=1 shows 
sawteeth 
and fishbones
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DEMONSTRATED COMPLETE SUPPRESSION 
OF THE m/n = 2/1 TEARING MODE BY RADIALLY LOCALIZED ECCD
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● βN is feedback controlled to temporarily rise to excite the mode

● Location of ECCD optimized (#111367) by toroidal field PCS "Search and Suppress"

More information 
in R.J. La Haye et al.
EX/S1-3
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● Substantially broadened the MHD stable operating space
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the building blocks needed for advanced operating modes:

~



VALIDATED ECCD THEORY ALLOWS USE OF DETAILED 
COMPUTER MODELS TO DEVELOP EXPERIMENTS
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● Excellent agreement of ECCD 
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 central shear in AT plasma with 
 ECCD at ρ = 0.4



ECCD PRODUCES CURRENT PROFILE 
MODIFICATION IN ADVANCED TOKAMAK PLASMA
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● βN H89 > 7 
 for full 2.0 s 
 ECCD pulse

● Total non- 
 inductive current 
 fraction >90%~

● βN at or slightly 
 above βN (no-wall)
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ECCD PEAKS CURRENT DENSITY AT RESONANCE LOCATION 
AND PRODUCES STRONGER NEGATIVE MAGNETIC SHEAR

268–02/MRW/wj
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● Clear evidence of q–profile modification also seen in quiescent double barrier 
 (QDB) plasmas (E.J. Doyle, et al. EX/C3-2)

JECCD



S A N  D I E G O

DIII–D
NATIONAL FUSION FACILITY

● Core barriers seen in all 
 four transport channels
 with ECCD
 — No barriers in 
  ECH case with 
  no current drive

● Gyrokinetic stability 
 code analysis shows 
 E×B shear and Shafranov 
 shift stabilization are 
 both important

● More information in 
 M.R. Wade et al. EX/P3–16

ECCD CAN TRIGGER FORMATION OF CORE TRANSPORT 
BARRIERS IN ADVANCED TOKAMAK DISCHARGES

255-02/KB/JY
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DENSITY AND IMPURITY PROFILES MODIFIED WITH ECH 
AND ECCD IN QUIESCENT DOUBLE BARRIER PLASMAS
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● EC power applied 
 near ρ = 0.2 in 
 plasma with core
 transport barrier
 already formed

● Density peaking
 reduced, leading 
 to much reduced 
 central impurity 
 densities and 
 factor 1.3 reduction 
 in Zeff
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● Substantially broadened the MHD stable operating space
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We have made progress since the last IAEA meeting in developing 
the building blocks needed for advanced operating modes:

~
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STATIONARY PLASMAS WITH βNH/q95 – ITER DESIGN VALUE
AND q95 > 4 HAVE BEEN DEMONSTRATED ON DIII–D
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CURRENT PROFILE IS FULLY RELAXED AND WALL PARTICLE 
INVENTORY IS EQUILIBRATED AFTER 3.0 s
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● τdur ~ 36 τE ~ 2 τCR ● Wall not important in particle balance
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ENERGY TRANSPORT IN LONG PULSE DISCHARGE COMPARABLE 
TO THAT OBTAINED IN LOW q95 REFERENCE SHOT

● χeff substantially lower than that
 expected by q scaling of transport
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— Global confinement scaling: χeff ∝ q1.4

— Nondimensional transport studies: χeff ∝ q2
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ENERGY TRANSPORT IN LONG PULSE DISCHARGE COMPARABLE 
TO THAT OBTAINED IN LOW q95 REFERENCE SHOT

● χeff substantially lower than that
 expected by q scaling of transport

● GLF23 drift-wave mode simulation give
 good agreement with measured profiles

● Model contains ITG, TEM, and ETG
 with effects of E×B
● More information in J.E. Kinsey 
 et al TH/P1-9
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QUIESCENT H–MODE RUNS ELM–FREE FOR LONG 
PULSES WITH CONSTANT DENSITY AND RADIATED POWER
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 QUIESCENT H–MODE HAS BEEN SEEN 
OVER A RANGE OF PARAMETERS
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● Requires neutral beam injection
 counter to Ip direction plus
 divertor cryopumping

● Low field example at 
 BT = 0.95 T, Ip = 0.67 MA
 and ne     = 1.1×1019 m–3

High Density QH–Mode

● QH–mode seen to date for
  3.4 ≤ q95 ≤ 5.8
  1.0 ≤ Ip (MA) ≤ 2.0
  1.8 ≤ BT (T) ≤ 2.1
  1.0 ≤ ne     (1019 m–3) ≤ 6.5
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 QUIESCENT H–MODE HAS BEEN SEEN 
OVER A RANGE OF PARAMETERS
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● Requires neutral beam injection
 counter to Ip direction plus
 divertor cryopumping

● Low field example at 
 BT = 0.95 T, Ip = 0.67 MA
 and ne     = 1.1×1019 m–3

● QH–mode recently seen 
 in ASDEX–U

High Density QH–Mode

● QH–mode seen to date for
  3.4 ≤ q95 ≤ 5.8
  1.0 ≤ Ip (MA) ≤ 2.0
  1.8 ≤ BT (T) ≤ 2.1
  1.0 ≤ ne     (1019 m–3) ≤ 6.5
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● ELM activity at the inboard target(s) 
  is significantly reduced in DN  
  →ELMs are generated on the  
   outboard side (consistent with  
   ELITE analysis) 
  
● Strong variation in the time – 
  averaged particle flux ratios

Modeling (UEDGE) indicates that particle drifts in the divertor play 
important roles in interpreting these results

THE INBOARD DIVERTOR PARTICLE AND HEAT FLUXES ARE 
RELATIVELY LOW IN SYMMETRIC DOUBLE-NULL PLASMA

244-02/KB/amw

e.g., Γin
Γout

≈ 0.2 (DN)

≈ 1 (SN)

● Strong variation in the time – 
  averaged heat flux ratios

● Results simplify divertor design 
  in future DN tokamaks

e.g., qin
qout

≈ 0.05-0.15 (DN)

≈ 0.3-0.5 (SN)0.0 0.15 0.0 0.15
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NEON/ARGON GAS JET IMPURITY INJECTION INTO A STABLE 
PLASMA RESULTS IN A RAPID, CLEAN PLASMA TERMINATION

Gas Jet

● 70 bar gas jet propagates 
 through plasma without significant 
 MHD activity

● Ten-fold increase in density

● Fast and clean current quench

● High radiated power from neon 
 collapses central Te and β

● Plasma remains well centered 
 in vessel

— No sign of non-thermal e-
 owing to high gas density
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IONIZATION/ENERGY BALANCE MODEL (KPRAD) MATCHES KEY 
FEATURES OF GAS JET MITIGATION EXPERIMENTS:

INITIAL BURNTHROUGH → Prad → Te COLLAPSE → ne CLAMPED

Model result:
Neon gas jet into DIII–D

Gas Jet
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IONIZATION/ENERGY BALANCE MODEL (KPRAD) MATCHES KEY 
FEATURES OF GAS JET MITIGATION EXPERIMENTS:

INITIAL BURNTHROUGH → Prad → Te COLLAPSE → ne CLAMPED

Model result:
Neon gas jet into DIII–D

Extrapolation to ITER is promising 
(see D.G. Whyte et al. EX/S2-4)

Gas Jet
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 REAL-TIME DISRUPTION DETECTION IS BEING USED TO 
TRIGGER GAS JET FOR VERTICAL DISRUPTION MITIGATION

● Gas jet triggered when plasma control system detects vertical 
 plasma shift
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● Substantially broadened the MHD stable operating space
 — Rotational stabilization of resistive wall modes yielding 
  βN = βN (ideal wall) = 2 βN (no wall)
 — Increased β by 60% via stabilization of (3,2) neoclassical tearing mode 
  with ECCD in sawtoothing plasmas
 — First stabilization of (2,1) neoclassical tearing mode using ECCD

● Developed plasma control tools
 — First integrated AT discharges with current profile control using ECCD
 — Pressure and density profile control with ECH and ECCD

● Demonstrated an improved, high q95 (>4) operating scenario for ITER

● Achieved solutions to key burning plasma issues
 — No ELM-produced, pulsed divertor heat load in QH–mode plasmas
 — Small heat and particle loads at inner divertor strike points in balanced 
  double-null divertors
 — Disruption mitigation via massive gas puff

SUBSTANTIAL PROGRESS SINCE IAEA 2000

255-02/KB/JY

We have made progress since the last IAEA meeting in developing 
the building blocks needed for advanced operating modes:

~
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ADDITIONAL PRESENTATIONS CONTAINING DIII–D RESULTS
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Feedback stabilization of NTMs with ECCD     R.J. La Haye  EX/S1-3
Stabilization of resistive wall modes      E.J. Strait   EX/S2-1
Modeling the stabilization of RWMs      M.S. Chu   TH/P3-10
Disruption mitigation by high pressure gas injection   D.G. Whyte   EX/S2-4
Sustaining steady-state AT discharges      M.R. Wade   EX/P3-16
Electron cyclotron current drive       C.C. Petty   EX/W-4
Electron cyclotron technology for plasma control    R.W. Callis   CT-7Rc
Scaling and modeling of high bootstrap tokamaks    F.W. Perkins  EX/P3-18
Internal transport barrier physics in QDB dischanges   E.J. Doyle   EX/C3-2
Turbulence stabilization by equilibrium and zonal flows   G.R. McKee  EX/C4-1Ra
Comparison of simulations with turbulence measurements  T.L. Rhodes  EX/C4-1Rb
Comprehensive gyrokinetic simulations      R.E. Waltz   TH/P1-20
Alternate ITER baseline scenario       T.C. Luce   EX/P3-13
DIII–D-like AT scenario for ITER       L.L. Lao   EX/P3-12
Transport modeling for burning plasma experiments   J.E. Kinsey   TH/P1-09
ELM  stability, peeling-ballooning mode      P.B. Snyder  TH/3-1
H–mode pedestal width and neutral penetration    R.J. Groebner  EX/C2-3
Acceptable ELM Regimes for Burning Plasmas    A.W. Leonard  EX/P3-06
Turbulence in the SOL of C–Mod, DIII–D, and NSTX    J.L. Terry   EX/P5-10
Blobs and cross-field transport in the tokamak edge   S.I. Krasheninnikov  TH/4-1
The effects of drifts on the boundary plasma     G.D. Porter   EX/P3-07
H–mode pedestal and extrapolation to ITER (ITPA)    T.H. Osborne  CT–3
Transport and ITB physics (ITPA)       P. Gohil   CT/P–05
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