
 Correlation of H–mode Barrier Width
and Neutral Penetration Length

October 14–19, 2002
NATIONAL FUSION FACILITY

S A N  D I E G O

DIII–D

Presented at
19th IAEA Fusion Energy Conference

Lyon, France

by
R.J. Groebner1

1General Atomics, P.O. Box 85608, San Diego, California 
92186-5608 email: groebner@fusion.gat.com

for M.A. Mahdavi,1 A.W. Leonard,1 T.H. Osborne,1 N.S. Wolf,2 

G.D. Porter,2 P.C. Stangeby,3 N.H. Brooks,1 R.J. Colchin,4 W.W. Heidbrink,5 

T.C. Luce,1 G.R. McKee,6 L.W. Owen,4 G. Wang,7 D.G. Whyte8* 

2Lawrence Livermore National Laboratory, Livermore, California 94551
3University of Toronto, Toronto, Canada

4Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
5University of California, Irvine, California 92697-4574

6University of Wisconsin, Madison, Madison, Wisconsin 53706
7University of California, Los Angeles, California 90095-1597

8University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0417
*Present Address: University of Wisconsin-Madison, Madison, Wisconsin 53706



2

                       RJG IAEA 2002
NATIONAL FUSION FACILITY

S A N  D I E G O

DIII–D

Future Machines Need Adequate Pedestal Height

♦ Core confinement increases as pedestal height increases
♦ MHD limits  Tped for a given pedestal width (Snyder - Thurs AM)
♦ We need to understand scaling of pedestal width
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This talk examines two questions
posed by Hinton-Staebler model

ο Is steep gradient region of
density profile equal to fuelling
depth?

ο Does steep gradient region of
density profile set minimum size
of transport barrier width?

This Talk Examines a Self-consistent Theory
for H-mode Barrier Structure

Hinton & Staebler time-dependent numerical transport calculations
have produced “H-mode” profiles -  Phys. Fluids B 5 1281 (1993)

Lebedev, Diamond, Carreras have analytic
model with similar physics for barrier
formation - Phys. Plasmas 4 1087 (1997)
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Transport barrier width
determined mainly by
particle source and increases
weakly with heat flux.

ΩExB reduces transport
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L-mode Edge Density Gradient Provides
Motivation to Examine Neutral Fuelling
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Analytic Model Developed to Compute Edge
Electron Density Profile (Mahdavi)
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Wagner, Lackner, Engelhardt
solved coupled equations for
density and neutral atoms1,2

[1] F. Wagner and K. Lackner, Physics of Plasma-Wall Interactions in
Controlled Fusion, Series B, Physics Vol. 131, 931 (1986).
[2] W. Engelhardt, W. Fenenberg, J. Nucl. Mater. 76-77 (1978) 518.
[3] M.A. Mahdavi et al., Nucl. Fusion 42 (2002) 52
[4] P. Stangeby, to be published
[5] N. Wolf, Proceedings of 2002 PSI
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♦ Mahdavi extended model and
applied to H-mode density3

ο Poloidally localized fuelling, Frank-
Condon and CX neutrals, step in D
across LCFS, . . .

♦ Model valid for edge Ti ~ 40-500 eV
♦ Assume λion ≤ λbarrier

♦ Case of λion ≥ λbarrier modifies details
but not basic conclusions4

♦ Benchmarked against UEDGE 2D
edge modeling code5
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Model Predicts that Electron and Neutral Profiles
Have Same Scale Lengths Inside Separatrix - ∆ne
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Wth defined from model to
emulate width from tanh.
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a) b)Experiment Model

H-mode

L-mode

Model Predicts: For Same ne,ped, L-mode and
H-mode ne Profiles Have Similar Shape

Widths from separatrix to pedestal are similar.
Different ne,sep can be explained by different transport coefficients.
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Changes in Density Profile from L to H Are
Consistent with Plasma Physics Plus Atomic Physics

Decrease in width and increase in gradient of density at L-H transition is
consistent with reduced diffusion coefficient with ~ constant fuelling.
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Does steep gradient region of density profile set
minimum size of transport barrier?

♦ Hinton & Staebler :
Transport barrier width
determined mainly by
particle source and
increases weakly with
heat flux

♦ To test, use ∆Te from
tanh as measure of λbarrier

♦ Measure ∆ne from Te
foot to inner edge of ne
barrier

~ 1/(ne∇ Te)
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Width of Density Step Provides Lower Limit for
Width of Transport Barrier
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♦ Is width of steep gradient region in H-mode density profile
approximately equal to fuelling depth?
ο Yes, DIII-D evidence strongly supports this picture
ο Widths and gradients of ne profile scale and have approximate

magnitudes expected from a model, including transport and fuelling
ο Model provides unified view of L-mode and H-mode ne profiles

♦ Does density step width set minimum size of transport barrier?
ο Yes, clear evidence in support of this idea
ο Te barrier is always as wide as or wider than ne step

♦ These data and analysis support hypothesis that minimum
H-mode barrier width is set by fuelling

♦ Scaling of transport barrier remains unknown
ο MHD, poloidal gyroradius, magnetic shear, etc. might be important

(Osborne -Wed pm)

Summary and Conclusions
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♦ This picture for minimum transport width has no intrinsic size
scaling and scales unfavorably as density is increased

♦ Some issues can modify the picture:
ο Transport barrier can be wider than density step

– Scaling is not  known

ο At higher temperature, increased neutral velocity and cross section
effects (e.g., reduced ionization rate) will lead to deeper neutral
penetration and wider density step

– Possible evidence from VH-mode, which has wider density step than
expected from analytic model but also higher temperature than valid
in model

♦ An idea for pedestal control
ο Techniques to deposit neutrals deeper into plasma  than possible

with gas-fuelling may lead to control of pedestal width and gradient

Possible Implications for Next Step Machines


