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ELMs are a Significant Concern
for a Burning Plasma Divertor

� Both energy confinement and Type I ELM size scale
with pedestal pressure
– Good Confinement ´ Large ELMs
– Target ablation if surface temperature rises above

sublimation/melting; ∆T∝ Energy density/(deposition time)1/2

� To assess Type I ELM compatibility with a burning
plasma device need to scale:
– ELM energy lost from main plasma
– Fraction of ELM energy deposited on target plate
– ELM deposition area
– ELM deposition duration
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Type I ELM Size Smaller
 at High Collisionality, Density

�Multi-machine, ITPA, scaling
indicates Type I ELM size
tolerable at high pedestal
collisionality

�For expected ITER pedestal
parameters; ELM energy
twice the tolerable limit if
collisionality scaling holds

�Understanding of underlying
ELM transport needed for
reliable scaling

*ELM criteria assumptions: a)50-100% of ELM energy on target, b) deposition area
1-2x steady heat flux width, c) deposition time of ion sound speed from pedestal
to target, ~600 µsec, d) carbon target and e) 100 MJ pedestal energy

*
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ELM Heat Flux Results from Series of
Transport Processes

� Radial Transport at Midplane: ELM instability
relieves gradients across separatrix.

� Transport in SOL: Electron and ion energy
carried from midplane into divertor by
parallel transport processes.

� Sheath Limits: Target sheath builds by loss
of hot electrons. Heat flux limited by ion flux
into sheath.

� All the above have potential to limit ELM loss
from the pedestal

� ELM heat flux profile at target set by ratio of
parallel to perpendicular transport in SOL

ELM-driven
Radial Flux

SOL Parallel
transport

Sheath
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Use DIII-D Scaling Data
to Study Transport Processes

� ELM loss from pedestal region
– Thomson scattering for ELM ∆Te and ∆ne profiles
– Integrate perturbed profiles of ∆Te and ∆ne for convected and

conducted ELM energy.
– Separate scaling of ELM conducted and convected energy with

density and/or collisionality

� SOL and divertor transport of ELM flux
– Fast diagnostics for SOL and divertor
– Scaling of ELM divertor characteristics with density

� Compare scaling of data with that implied by different
ELM transport processes
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ELM Loss from Pedestal
Measured by Thomson Scattering

�Collect Thomson profiles over ≥500 msec
of steady ELMing conditions, ≥ 40 profiles

�Order data in time to nearest ELM
� Fit each measurement location with pre-

and post-ELM linear time dependence.
ELM ∆Te and ∆ne at t=0

� Integrate profile for ELM convected and
conducted energy separately

�Experimental scans in density, Ip, Bt and
triangularity.

THOMSON
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Fitting for Te and ne
Before and After an ELM

� Te and ne at each
Thomson location fit to
linear function in time with
respect to nearest ELM.

� Pre-ELM and post-ELM
values set by intersection
with t=0

� Error bars set by
uncertainty in linear fit.
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Typical Thomson pre-ELM and post-ELM profiles

� Little change ever
observed inside ρ=0.7
for Type I ELMs

� Integrate difference in
profiles for ELM
electron energy
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ELM ∆Ti Smaller than ∆Te

� ELM ∆Ti  profile from fast
CER, CVI, 0.5 msec

� ∆Ti less than 1/2 of ∆Te

� Ti > Te in steep gradient
region

� Very limited data set for
fast Ti measurements.
Need systematic study to
determine relationship
between ∆Ti and ∆Te

� Assume ∆Ti = 0 for this
study

ELM Perturbation to Pedestal Ti and Te Profiles
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ELM energy split into convective and
conductive channels

� Integrate Thomson profiles for convective, <T>∆n, and
conductive, <n>∆T, losses. Separate scaling may
indicate underlying transport mechanisms.

� Convective loss; assume ion density perturbation equal
to electrons;  ∆Wconv=2.0x∫3/2<Te>∆ned V

� Conductive loss; assume ∆Ti =0,
∆Wcond=1.0x∫3/2<ne>∆Ted V

� Need more measurements for variations of Zeff and ∆Ti

� Reasonable agreement with ELM energy from fast
magnetic equilibrium analysis
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Little Density Dependence
for Convected ELM Energy

� ELM energy, ∆W,
normalized by pedestal
energy, Eped

� No systematic change in
normalized ELM energy for
ne,ped/nGW≤0.7

� Large scatter, but no
obvious Ip or q dependence

� Eped factor of 2 greater for
high Ip and high δ cases

� High triangularity case;
<δ>~0.45, others at <δ>~0.0

Convected ELM Energy
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Conducted ELM Energy Decreases
Strongly at Higher Density

� Conducted ELM energy
decreases linearly with
higher density

� Very small conducted
ELM energy at
ne,ped/nGW>0.65

� Data well ordered by
ne,ped/nGW for wide range
of Ip and δ

� Edge stability analyzed
for highlighted points at
q=3.1
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More than Collisionality Alone
needed for Scaling ELM Conducted Energy

�Expect strong collisionality
dependence because of
bootstrap current role in ELM
stability

�Collisionality dependence
important because burning
tokamak will have a low
collisionality pedestal

�Stronger collisionality
dependence at high
triangularity also suggested by
MHD model
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� Inclusion of ∆Ti ELM
energy should help
agreement

Total ELM Energy from 
Fast Magnetic Analysis



15
NATIONAL FUSION FACILITY

S A N  D I E G O

DIII–D
A.W. Leonard, IAEA 2002, Lyon

Edge Profiles Fitted
for MHD Analysis of Density Scan

� Pressure gradient from fitted ion and electron density and temperature
� Ohmic current density + modeled collisional bootstrap from fitted profiles
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Stability Analysis Indicates
Higher Mode Number at High Density

� Stability analysis using ELITE
calculates linear growth rate
of peeling-ballooning modes
using measured pedestal
pressure profile and
modeled collisional edge
bootstrap current

� Bootstrap current at low
density stabilizes shorter
wavelength modes allowing
higher pressure gradient to
destabilize longer
wavelength modes10 20 30 40 50 60 70
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Narrower Mode Width at High Density

� Eigenmode radial width scales
with steep gradient width for
higher n modes

� Narrower gradient region at high
density for the cases studied

� Narrower pedestal gradient also
favors high mode number

� Shorter wavelength modes more
localized to the edge speculated
to reduce conducted ELM energy
at high density

Envelope of most unstable Eigenmode from ELITE
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ELM Stability Analysis Consistent with
Experiment, but more Progress Needed

� Two effects favor high toroidal mode number at high density
– High collisionality reduces bootstrap current stabilization of short wavelength

modes. Collisionality effect expected to be stronger at high triangularity
because bootstrap current stabilizes modes to lower n

– Narrow pressure gradient favors higher mode number

� Pedestal width important for mode stability characteristics, but width
scaling still very uncertain [Groebner EX/C2-3,  OsborneCT-3 ]

� Scaling of conduction and convection suggests two transport processes
– Conduction: ∆Te indicates parallel electron conduction from pedestal to SOL

due to overlapping modes, ergodized edge
– Convection: Parallel convection should be much smaller than electron

conduction at pedestal Te. Large ∆ne indicates perpendicular, perhaps ExB,
transport.

� Linear stability models, e.g., ELITE, cannot follow mode evolution or predict
transport. Further theoretical development needed
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ELM Energy Transport
 for a Simple SOL Model

� ELM instability at outer midplane transports plasma from
pedestal into SOL.

� Hot electrons quickly reach target raising sheath potential and
limiting electron heat conduction to target

� Bulk of target heat flux arrives with ELM ion flux from pedestal
� Parallel transport can limit loss of energy from pedestal
� ELM Characteristics of Simple Model:

– All energy lost from pedestal falls on target
– Width of ELM heat flux set by ratio of parallel to perpendicular transport
– Heat flux duration set by ion sound speed flow from outer midplane to

each divertor
– SOL Te decays from Te,ped on ELM heat flux timescale
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Fast Edge Diagnostics
for Studying ELM Transport

� Edge SXR; pedestal electron
temperature

� D α; SOL and divertor particle
flux

� Langmuir probes; ion flux to
target

� Interferometer; divertor
density

� IR camera; target plate heat
flux

Interferometer

Fast Filterscopes
Lower Divertor

Fast
Filterscopes

Midplane

LPs

Soft X-ray

Fast
Bolometer

Core
Thomson

Divertor
Thomson

IRTV
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Fast Divertor ELM Pulse at Low Density

� Typical ELM shown. Significant ELM-to-
ELM variations can occur

� Low pedestal density; ne,ped/nG W~0.4,
ne,ped~ 5x1019m-3, Te,ped ~ 750 eV, Ion
sound time to outboard ~50 µsec,
inboard ~120 µsec

� Fast ∆Te,ped from SXR ≤100µsec.

� In/out Jsat, and Dα rise together, within
50µsec. Significant Jsat variations occur

� In/out heat flux symmetric within
100µsec, ~ IR camera time resolution

� Divertor density rise from
interferometer, >2x1020m-3, rise and fall
time ≤100µsec
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High Density ELMs Slower, Asymmetric

� High pedestal density; ne,ped/nGW~0.8,
ne,ped ~1x1020m- 3, Te,ped ~300 eV, Ion
sound time to outboard ~75 µsec,
inboard ~180 µsec

� Inboard Flux, Jsat, and Dα, dominate,
but slower rise and longer duration

� ELM heat flux peaked to inboard,
slower heat pulse, 0.5-1.0 msec

� Outboard divertor cold and dense
before ELM. Divertor density drops as
ELM heats outboard divertor plasma
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Heat Flux In/Out Asymmetry
Increases at High Density

� Inboard heat flux higher
and narrower than
outboard due to flux
compression

� ELM heat flux width 1-2cm
mapped to midplane.
Between ELM heat flux
width ~1cm

� Outboard heat flux
decreases at high density

� ELM heat flux asymmetry
not understood
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Fast Density rise in Far SOL at ELM

� Assuming poloidal
symmetry SOL
density rise
roughly accounts
for density lost
from pedestal

� ELM heat flux
width at target is
~1-2cm mapped to
midplane, much
narrower than
SOL density
perturbationMidplane Radius from Separatrix
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Reflectometry Also Indicates
Fast Rise in Far SOL Density

� Significant density moves to
outer midplane limiter in
~500 µsec at ELM

� Fast rise time suggests SOL
density rise due to radial
transport rather than
recycling of ELM flux in
divertor

� Ion equilibration time of
>400 µsec indicates
significant fraction of ELM
ion energy carried to main
chamber wall
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Variations in SOL Transport
from Low to High Density

� Indications of fast SOL conductive transport at low density
– Large pedestal ∆Te, electron thermal energy carried to target
– Rapid rise in divertor density may raise sheath limit
– No indication of Te elevated to Te,ped in SOL due to ELM
– ELM particle flux to main chamber and narrow divertor ELM heat flux

indicate target plate ELM heat flux not wholly tied to pedestal ion flux
reaching target

� Indications of convective SOL transport at high density
– No pedestal ∆Te, large pedestal ∆ne indicate convective transport
– Longer heat pulse duration consistent with ion sound speed flow from

midplane to target

� More work needed to asses role of sheath in ELM transport
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Conclusions

� Type I ELMs may be compatible with a burning tokamak
IF the energy conducted from the pedestal can be kept
small, or zero

– Low conduction, or purely “convective” Type I ELMs occur in present
tokamaks at high pedestal collisionality, suggesting large intolerable ELMs
for a burning tokamak with a low collisionality pedestal

– Other factors such as pedestal width and triangularity may modify the
collisionality dependence perhaps allowing access to purely “convective”
ELMs in ITER

– More work needed to asses role of SOL transport in limiting ELM energy

� Purely convective ELMs also help to mitigate the ELM heat
flux by lengthening the duration of the ELM energy
deposition on the target


