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Abstract

The availability of high power =1 MW, long pulse length, (effectively cw), high frequency, >100 GHz, gyrotrons has opened the opportunity for enhanced
scientific results on magnetic confinement devices for fusion research worldwide. This has led to successful experiments on electron cyclotron heating,
electron cyclotron current drive, non-inductive tokamak operation, tokamak energy transport, suppression of instabilities and advanced profile control
leading to enhanced performance. The key development in the gyrotron community that has lead to the realization of high power long pulse gyrotrons is
the availability of edge cooled synthetic diamond gyrotron output windows, which have low loss and excellent thermal and mechanical properties. In
addition to the emergence of reliable high power gyrotrons, ancillary equipment for efficient microwave transmission over distances of hundreds of
meters, polarization control, diagnostics and flexible launch geometry have all been developed and proven in regular service.
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CPI 110 GHz 1 MW, 10 s GYROTRON

THE 6 MW 110 GHz ECH SYSTEM FOR THE DIlI-D TOKAMAK

750 kW, 2 s, GYCOM gyrotrons
1000 kW, 10 s, CPI gyrotrons
41 to 95 m 31.75 mm dia, evacuated
corrugated waveguides

Dual 2-mirror steerable launchers T
ol € +20° toroidal, +20° poloidal | \\
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THE PEAK WINDOW TEMPERATURE REACHES A

Vac-ion
Pumps STEADY STATE LEVEL BELOW 170 °C AFTER 3 s
Single anode magnetron injection
type electron gun (dIOde) Gyrotron e The peak temperature of 140°C is 10
SR T T Collector 'g;ﬁ;?g_ below the 175°C design limit a
off ~ 33% Y, 22,6 L e CVD diamond is a good IR window %E i
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. Collector Coil Matching which complicates the window £
Internal mode converter with i Vacuum ;;mlf)erl?ture nclleasu:‘lemlfnts. The :

i Diamond Window amber ackground inside the OTRON PULSE LENGTH
Gaussian OUtPUt gyrotron fluctulates with the W_: CCIPI'E rtc = e
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auncher . o
Single disk CVD diamond output I | Superconducting Y aowne : g’e “f““tll?li‘t bea(;“, Appears to ‘Ze
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window, edge cooled : 5 fao
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THE APPLICATION OF CVD DIAMOND WINDOWS
HAS NOT BEEN WITHOUT CHALLENGES

. .
e Several CVD diamond windows have i T

failed due to contamination.

Raman scattering measurements on
the Tin Man window were made on
the gyrotron, which verified the
presence of graphite on the surface.
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"Hot spots" also were seen in the IR
measurements of the window ‘W“
temperature during operation. 8 %F

) Surface before cleaning
. . . @ ! Surface after
 The window was grit blasted with 3 z, ‘ clning
micron alumina. This reduced the § »”"@%ﬁ:;;i
° . . £ ol il ;
graphite and eliminated most of the 6 Bu,“,mmng/ y

"hot spots" from the IR measurement.
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POLARIZER NEW DESIGN DUAL WAVEGUIDE LAUNCHER

This new launcher design has been developed and built
by the Princeton Plasma Physics Laboratory as part of an

FUTU RE WAVEGU'DES 7,8 FWD/REV ongoing collaboration.

- Air turbine drives, 10°/sec scan rate

POWE R - Absolute digital position encoders
- +20° scan range poloidally (the upper half plane in DIlI-D)

WAVEG U | D ES 1 , 2 MON ITO R - +20° toroidally (maximum co and counter-current drive)

TURBO
MOLECULAR
- Cooled by radiation to a water-cooled shroud

PU M P - 800 kW, 10 sec pulses every 10 min

Waveguide
Launcher

- Stainless steel 60 mm diameter launch waveguides
- Gaussian waist at ~1 m from the launcher

Focusing
Mirror

WAVEGUIDES 3, 4 —

Steering
Mirror ==

Summary
+ Long pulse (~10s) 1 MW 110 GHz gyrotrons are now operational DTWOl Stegl‘tings Mil‘l‘(’: ;%Sikg:;; li?)Vel?elen
i eveloped to duppor , 10 s Pulses
on the_D"I D tokamak _ using only Radiative Cooling
+ CVD diamond output windows have been shown to support  To mimimize surface distortion '
1 MW power levels without over heating mirrors are designed to wick away
. I heat, while keeping the disruption
DIlI-D + Steerable launchers allow for on & off-axis rf power deposition, induced eddy currentsat &
and for co, radial and counter injection - The Cuss designuses -
+ Evacuated low-loss waveguide allow for convenient routing of e e o
the rf power from the gyrotron hall to the tokamak using very ol of copper on the badiide
little space " lackenc back v radine th
absorbed power.

State of the art Waveguide Components have been
Developed for the DIII-D ECH System
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Waveguide switch
RS The Development of a 1 MW, c¢cw, Gyrotron
Step corrugated vacuum -
e S e o Required the Development of a 1 MW
A Calorimetric Dummy Load

* A new compact mode-conversion
dummy load [John L. Doane, Int. J.
Infrared and Millimeter Waves, 14,
363 (1993)] is now in service.

e Absorbs about 75% of the incident
HEI,1 mode and can be operated
cw at 1.0 MW.

e This load 1s backed by a standard
Inconel dummy load which takes

A power monitor

miter bend is the

first miter in each
waveguide line.

waveguide bellows section smooth wall section

the remaining 25% of the power. [ waterjackel | pd

25% to inconel i

The combination is extremely dummy load EHiy ——  <— HEi

Standard miter
W bend. Grooved ; A} waveguide bellows
Y- rotating mirrors | are used where response.
a create polarization Rt transmission line
control miters. 1 movement is identified

black with rapid calorimetry




