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● Our  understanding of the physics of ITBs is being increased by analysis and  
 comparisons of experimental data from many tokamaks worldwide.  

● An international ITB database consisting of scalar and 2-D profile data on ITB 
 plasmas has been developed

● Specific discharges from three major tokamaks (DIII–D, JET, JT-60U) were selected 
 to better understand the influence of the q-profile on ITBs 

● Gyrokinetic stability analysis of the selected discharges indicates that the ITG mode  
 growth rates generally decrease with increased negative shear and that the E × B  
 shear rate is comparable to the linear growth rates at the location of the ITB

● Tests of several transport models (JETTO, Weiland model) using the 2-D profile data 
 indicate there is only limited agreement between model predictions and experimental 
 results for the selected discharges

SUMMARY

256-02/PG/amw

— To determine the requirements for formation and sustainment of ITBs 
— To perform tests of theory-based transport models in an effort  
 to improve their predictive capability

— Selected a low shear or monotonic q-profile discharge together with 
 a high magnetic shear discharge from each machine
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● Examination and compilation of experimental results on transport from many  
 machines worldwide to better understand the physics of ITB formation and  
 sustainment 

● The development of an international database on ITB experimental results to  
 determine the requirements for the formation and sustainment of ITBs

● Determining and performing comprehensive tests of theory based transport 
 models and simulations using the international ITB database (ITBDB) – critical 
 for model validation and improving predictive capability

● Identifying experiments to address and resolve critical issues in transport  
 and ITB physics 

● Facilitating inter-machine ITB experiments and comparisons

PURPOSE OF THE ITPA GROUP ON TRANSPORT 
AND THE ITBDB WORKING GROUP 

256-02/PG/amw
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● There is a wide variety of experimental results on plasma transport and ITB's  
 from many machines worldwide

● Provide a depository for ITB data for access by experimentalists and modelers 

● Improve predictive capability of transport models

● Find solutions to critical issues such as impurity transport, electron transport, 
 fueling, core-edge integration, profile control, etc.

MOTIVATION FOR ITPA AND ITBDB WORKING GROUPS
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— Need to assess large variety of results and improve our understanding  
 of important transport issues
— Define common definitions for ITBs
— Assess reactor compatibility and develop reactor scenarios

— Development of international ITB database 
— Determine key trends from data, e.g., effect of q profile, 
 momentum input, etc.

— Need to test and validate models with experimental data
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● The formation and sustainment of ITBs is very dependent on behavior  
 of the q-profile in many devices 

● Determine the variation in the E × B shearing rate and the ITG/TEM mode 
 growth rates for the selected discharges in order to evaluate the relative 
 influence of the q-profiles

● Need to improve the predictive capability of transport models

● The work described in this paper is expandable

MOTIVATION FOR THIS PAPER
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— Need to examine discharges with significant differences in q-profiles 
 (e.g., positive shear to strong negative shear from many devices

— Examine the level of agreement between model predictions and  
 experimental results for selected discharges with significantly  
 different q-profiles 

— By increasing the number of models to be tested 
— By examining more issues relevant for reactor scenarios
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● Analysis of data from  
 ITB database [1]

● Plasmas with weak or negative 
 magnetic shear are more  
 favorable for ITB formation

TARGET PLASMAS WITH WEAK OR NEGATIVE MAGNETIC SHEAR 
REQUIRE LOWER HEATING POWER FOR ITB FORMATION 
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● Heating power per particle  
 just prior to ion-ITB formation  
 (for dominantly ion heated  
 plasmas) (ne = plasma density; 
 Vp = plasma volume)
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[1] G.T. Hoang et al., Proc. 29th EPS Conference, Montreux, Switzerland (2002)
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● For ion-ITB with dominant 
 ion heating

THE E × B SHEARING RATE IS CLOSE TO THE MAXIMUM 
LINEAR GROWTH RATE AT THE TIME OF ITB FORMATION

256-02/PG/amw

● Using data from ITB database [1]

● Data at time of ITB formation

● Indicates strong influence of 
 E × B flow shear in several 
 devices

JT-60U (     for no ITB)
JET
TFTR
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[1] T. Fukuda et al., Proc. 29th EPS Conference, Montreux, Switzerland (2002)
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● Used 2-D profile data from ITBDB for DIII–D, JET and JT-60U 

● JETTO is based on an empirical mixed Bohm/gyroBohm transport model [1] 

● Examined pairs of discharge from each device

PREDICTIVE SIMULATIONS USING TRANSPORT MODELS: 
JETTO AND WEILAND MODEL 
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— With weak negative shear or monotonic q profile 
— Strong negative shear

 Bohm term: 

 GyroBohm term: 

Where H (x) is a Heaviside step-function, s is magnetic shear, C is an adjustable 
factor, γ is the growth rate, ωE×B is the shearing rate 

q2 HχBohm ∝
∇nT  ∇Te  

T nB

B2

ωE×B
γ0.05 + s – C( )

3/2
χgyroBohm ∝

∇Te  s  

1 + s  
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● Weiland model is an advanced fluid model [2] whereby

PREDICTIVE SIMULATIONS USING TRANSPORT MODELS: 
JETTO AND WEILAND MODEL (CONTINUED) 
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Where H (x) is a Heaviside step-function, γk is the characteristic growth rate 
and k is the characteristic perpendicular wave-vector
[1] G. Cennachi and A. Tami, JET-IR (88), 03 (1988)
[2] J. Weiland "Collective Modes in Inhomogeneous Plasmas"  
 Institute of Physics Publishing, Bristol and Philadelphia (2000) 

Hχ ∝
k

γk – ωE×B ( )Σ T k2
γk – ωE×B 
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● DIII–D discharge 87031 – weak negative central shear
● DIII–D discharge 85989 – strong negative central shear (NCS)

● Only reasonable agreement with Ti profile for strong NCS case

JETTO PREDICTIVE MODELING FOR DIII–D DATA
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● JET discharge 46664 – weak positive shear
● JET discharge 53521 – strong negative shear

● Good agreement with Ti and Te profiles only for strong negative shear case

JETTO PREDICTIVE MODELING FOR JET DATA

256-02/PG/amw

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0

1.0

2.0

3.0

10
4 

eV
10

4 
eV

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
ρ ρ ρ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2.0

4.0

6.0

8.0
10

4 
eV

10
3 

eV

2

3

4

5

2

4

6

8

10

EXP

EXP

EXP

EXP

EXP

EXP

JET #46664 
T=6 s, Ti 
JETTO predict

JET #53521 
T=6 s, Ti 
JETTO predict

JET #53521 
T=6 s, Te 
JETTO predict

JET #53521 
T=6 s, q 
JETTO predict

JET #46664 
T=6 s, Te 
JETTO predict

JET #46664 
T=6 s, q 
JETTO predict

(a)

(d) (e) (f)

(b) (c)

C=1.0 
C=1.5

C=1.0 
C=1.5

C=1.0 
C=1.5

C=1.0 
C=1.5

High Negative 
Shear

Low Shear Model

Model



S A N  D I E G O

DIII–D
NATIONAL FUSION FACILITY

● JT-6OU discharge 34487 – weak positive shear
● JT-6OU discharge 39056 – strong negative shear

● Poor agreement for all cases

JETTO PREDICTIVE SIMULATIONS FOR JT-6OU DATA
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● For JET strong NCS discharge – 53521

● Increasing the toroidal rotation by factor of 4 produces the Ti ITB, but  
 grossly overestimates the Te profile 

COMPARISON BETWEEN JETTO AND WEILAND MODELS
USING EXPERIMENTAL DATA FROM JET
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● Weiland model fails to produce the Ti or Te ITBs

● Comparisons also performed for DIII–D and JT-60U discharges
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● Overall there is limited agreement between the predictive simulations 
 and the experimental data

● Fair agreement is obtained in predicting the Ti profiles (c.f. to Te profiles)  
 by JETTO for strong NCS discharges 

● Predictions for the Te profiles are very poor

● Weiland model is unable to produce the experimental Te and Ti profiles 
 for JET discharges

● JETTO overestimates both the Ti and Te profiles for low magnetic shear 
 discharges in DIII–D and JET

SIMULATION RESULTS

256-02/PG/amw

— JETTO does not include effects such as alpha stabilization

— Preference for reduced transport in the presence of low magnetic shear 
 and moderate levels of plasma rotation



THE E × B SHEARING RATE IS COMPARABLE TO THE MAXIMUM 
LINEAR GROWTH RATE (ITG/TEM) AT THE LOCATION OF THE ITB
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● ITG/TEM linear growth rates calculated using the GKS code [1] 

● Generally the ITG growth rates tend to decrease with increased negative magnetic shear

● Differences between the Hahm-Burrell and Waltz shearing rates result from:

SUMMARY OF GYROKINETIC STABILITY ANALYSIS

256-02/PG/amw

● E × B shearing rates from Hahm and Burrell [2] and Waltz et al. [3]

[1] M. Kotschenreuther, et al., Comp., Phys. Comm. 88, 128 (1995)
[2] T.S. Hahm and K.H. Burrell, Phys. Plasmas 2, 1648 (1995)
[3] R.E. Waltz et al, Phys. Plasmas 4, 2482 (1997) 

— Neoclassical vθ used in evaluation of Er

— More favorable for ITB formation for given E × B shearing rate

— Flux-surface averaged evaluation for Waltz and outside midplane for Hahm-Burrell 
— Pre-derivative (r/q) factor for Waltz which can be significantly smaller in elongated 
 plasmas than the corresponding factor (RBp/B) used in Hahm-Burrell
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CENTRAL BEAM DEPOSITION AND NEGATIVE 
MAGNETIC SHEAR AID ITB FORMATION
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● Constant Ne puff for t > 44s. 
 Central zeff = 3.5 at t= 46.9 s 
 (dominated by Ni)

● Steep impurity density gradients 
 are inboard of the location of the 
 Ti gradients

IMPURITY ACCUMULATION IS A CRITICAL PROBLEM  
FOR ITB DISCHARGES
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● Before ITB formation, impurity 
 density profiles are hollow or  
 slightly peaked

● Data from JET

● On ITB formation, impurity density 
 peaking increases with impurity 
 charge Z (weakest for C and  
 strongest for Ni)
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● Central ECH/ECCD decreases the central electron density and Zeff (from Ni and Cu) 
 decreases by a factor of 2

● QDB plasmas have peaked density profiles

CENTRAL ECH/ECCD CAN BE USED TO CONTROL THE  
ELECTRON DENSITY AND IMPURITY DENSITY PROFILES IN ITBs
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STRONG ITBs WITH Te = Ti HAVE BEEN FORMED 
IN REVERSE MAGNETIC SHEAR DISCHARGES
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REAL TIME CONTROL OF ITB'S AND q-PROFILE HAVE BEEN 
DEMONSTRATED ON JET
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● Tests of transport models (JETTO, Weiland model) have been performed  
 using profile data from the international ITB database 

● Overall there is limited agreement between the model predictions and  
 the experimental data from DIII–D, JET and JT-60U

● Much more interaction between experimentalists and modelers is needed  
 to improve the predictive capability of the models

● Gyrokinetic stability analysis of ITB discharges from DIII–D, JET and JT-60U 
 indicates that the E × B shear rate is comparable to the maximum linear  
 growth rates at the location of the ITB 

CONCLUSIONS

256-02/PG/amw

— Using data from several machines allows for model validation over a large  
 range of conditions (reveals deficiencies and areas for improvement) 
— Important for improving predictive capability of models
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● More work and greater interaction between modelers  
 and experimentalists is required to perform further tests of  
 transport models and to improve the models

● Increased focus on critical issues for burning plasmas  
 and reactor compatibility

● More multi-machine collaborative experiments and comparisons  
 of experimental data, e.g., similarity experiments

FUTURE WORK

256-02/PG/amw

— Test more transport models (GLF23, Multi-mode, etc.) 
— Examine more linear stability codes (FULL, GS2, etc.) 
— Design experiments to test models 
— Motivate model development from experimental results 

— Electron transport, core heating and fueling, impurity 
 accumulation, profile control, stability, etc.
— Need solutions to issues

● Improvements could result from more accurate and reliable treatment  
 of transport suppression mechanisms such as E × B flow shear,  
 negative magnetic shear, and alpha stabilization




