SCALING AND MODELING STUDIES OF HIGH-BOOTSTRAP-FRACTION TOKAMAKS

F. W. PerkinsPrinceton - DIII-D CollaborationT. CasperLLNLP. PolitzerGeneral Atomics

IAEA Fusion Energy Conference Lyon, France 2002

ISSUES

- Ultimate goal is a steady-state tokamak reactor with $Q \ge 10$.
 - Thermonuclear heating drives only bootstrap current
- Experiments to investigate 100% bootstrap tokamaks must use heating with *no current drive capabilities*:

Gyrotrons, Minority ICRF

EXPERIMENTAL RECIPE

1. Form initial low-density discharge with flat, high q-profile

- 2.Turn off transformer; $V_{loop} \rightarrow 0$
- 3. Start central ECH (P > 3 MW); increase density to $5 \cdot 10^{19}$ m-3

4. Wait for several current relaxation times

5. Plasma Response ??

- Settle into 100% bootstrap discharge
- Continues Current Decay
- Disrupt

SELF-CONSISTENT MODELING OF HIGH BOOTSTRAP DISCHARGES

- Model 100% bootstrap tokamak discharges with self- consistent transport.
 - Coupled fast heat transport system and slow poloidal field diffusion.

- Use nondimensional approach
- Heat diffusion coefficent is an analytic formula with physics properties given by construction

STEADY - STATE COUPLED DIFFUSION LOOPS: CYLINDRICAL MODEL

- Assume circular tokamak, fixed density and heating profile, j=jbs
- Model will give scaling properties vs. B, I_p , n_e , P_{aux} , etc.

$$\begin{aligned} \mathbf{j} &= \left(\frac{\mathbf{r}}{\mathbf{R}}\right)^{1/2} \mathbf{C}_{bs} \frac{\mathbf{n}_{e}}{\mathbf{B}_{\theta}} \left(\frac{\mathbf{dT}}{\mathbf{dr}}\right) \\ \frac{\partial}{\mathbf{r}\partial \mathbf{r}} \left(\mathbf{r} \mathbf{B}_{\theta}\right) &= \boldsymbol{\mu}_{o} \mathbf{j} \end{aligned}$$
$$\begin{aligned} \frac{\partial}{\mathbf{r}\partial \mathbf{r}} \left(\mathbf{r} \mathbf{n} \,\boldsymbol{\chi} \,\frac{\partial}{\partial \mathbf{r}}\right) &= \mathbf{Q} &= \frac{\mathbf{P}}{2\pi^{2} \mathbf{R} \Delta^{2}} \left\{\frac{\Delta^{2}}{\Delta^{2} + \mathbf{r}^{2}}\right\}^{2} \end{aligned}$$

$$\chi = C_{\chi} \frac{T^{3/2} M^{1/2}}{e^2 B^2 L_T} q^2 = C_{\chi} \frac{T^{1/2} r^2 M^{1/2}}{e^2 B_{\theta}^2 R^2} \left(\frac{\partial T}{\partial r} - \frac{T}{\Delta}\right)$$

GYROBOHM DIFFUSIVITY

• Diffusivity constructed to have properties observed in tokamak experiments

$$\chi = C_{\chi} \frac{T^{3/2} M^{1/2}}{e^2 B^2 L_T} q^2 = C_{\chi} \frac{T^{1/2} r^2 M^{1/2}}{e^2 B_{\theta}^2 R^2} \left(\frac{\partial T}{\partial r} - \frac{T}{\Delta}\right)$$

- 1. GyroBohm scaling; transport independent of β
- 2. Flat density profile
- **3. Experimental** confinement time depends only poloidal field (ie only on plasma current)
- Poloidal field enters diffusivity; transport *independent* of toroidal field.

SIMPLIFIED NONDIMENSIONAL EQUATION

- Introduce nondimensional variables; $\tau = T/T(0)$, u = r/a, $u_0 = \Delta/a$
- Second order eigenvalue equation

$$\frac{d\tau}{du} = -\frac{\tau}{\Delta} - \sqrt{\left(\frac{\tau}{\Delta}\right)^2 + \frac{\psi^2 G}{u^5 \tau^{0.5}}} \qquad \frac{d\psi}{du} = -\lambda u^{2.5} \left(\frac{d\tau}{du}\right)$$

$$\lambda = \frac{C_{bs}}{C_{\chi}} \left(\frac{R}{a}\right)^{1/2} \frac{e^2 \mu_o P}{(2\pi)^2 M^{1/2} T_o^{3/2}} = \lambda(u_o) = 0.47$$

• Solution determines value of λ and hence the relation between P and T_o

SOLUTIONS

• Nondimensional profiles for no critical gradient

1. Relative temperature profile vs normalized radius

Relative q profile: q/q(a) vs normalized radius

EIGENVALUE DETERMINES CENTRAL TEMPERATURE

- 1. Numerical Solution determines that eigenvalue $\lambda=0.47$
 - Normalizing C_{χ} to DIII-D Discharges $% C_{\chi}=0.05$
 - Evaluation of central temperature is

 $T(0)^{3/2} = 0.60 \cdot P_{MW} (R/a)^{1/2} C_{bs}$

- Temperature depends only on P2/3 (R/a)1/3
 - No dependence on density, size, or toroidal field.
 - Special case of gyroBohm scaling at constant $\beta_p ~~(or~\beta)$

RESULTS AND SCALING

• GyroBohm Confinement, ≈100%Bootstrap no critical gradient

$$T_{keV}(0)^{3/2} = 0.60 \cdot P_{MW} \left(\frac{R}{a}\right)^{1/2} C$$

$$\mathbf{I}_{p,MA} = (0.15) (\mathbf{C}_{bs})^{5/6} (\mathbf{n}_{19})^{1/2} (\mathbf{P}_{MW})^{1/3} \mathbf{a}_{r}$$

SOLUTIONS WITH CRITICAL GRADIENT

- Critical scale length equal to minor radius.
- Eigenvalue doesn't change much (λ = 0.45)

Relative Temperature Profile

q profile

FULL TORIDAL MODEL AND COMPATIBILIY WITH NEGATIVE SHEAR

- 2- Dimensional model couples solution to 2D Grad Shafranov equilibrium with 1D heat transport equation.
 - Equations define the model.
- 1. Non dimensional Grad-Shafranov equation

$$u\frac{\partial}{\partial u}\frac{1}{u}\frac{\partial\widetilde{\psi}}{\partial u} + \frac{\partial^{2}\widetilde{\psi}}{\partial v^{2}} = -\lambda_{1}\frac{dp}{d\widetilde{\psi}}\left\{ \begin{bmatrix} u^{2} & -\frac{1}{\left\langle u^{2}_{o} \\ u^{2} \\$$

MORE EQUATIONS

2. Heat transport equation has many physics processes

$$\frac{P_{\text{heat}}}{S} = C \ e^{\alpha s} \ \frac{n \ M^{0.5} \ A^* \ T^{0.5}}{(2\pi)^3 \ e^2} \left(\frac{\partial T}{\partial \psi}\right) \left(\frac{\partial T}{\partial \psi} - \frac{T}{\delta}\right)$$

- Critical temperature gradient
- GyroBohm heat diffusion
- Gradients only with respect flux functions
- Confinement depends only on plasma current; no TF
- \bullet No dependence of diffusivity on β
- Overall magnetic shear dependence improves confinement

COMPATIBILITY

• Combined heat and and plasma current sources lead to compatibility criterion

$$\left(\frac{2i^{2}}{\lambda_{3}\,\widetilde{A}^{*}f_{t}}\right)\boldsymbol{U} = -p^{\prime} = \frac{\left(p^{\prime}/\delta\right) + \sqrt{\left(p/\delta\right)^{2} + \lambda_{2}\left(\frac{\Pi}{\Sigma}\right)\frac{8\pi\,p^{(3\gamma-1)/2}}{\widetilde{A}\,e^{-\alpha\,\boldsymbol{U}}}}{2\left(1-\gamma\right)}$$

- **U** = **I**[']/**I** is related to magnetic shear
- Implicit equation for magnetic shear
- For negative magnetic shear, a solution may not be available

LONG DURATION PULSE IN DIII-D

• Thermal diffusivity normalized to this shot

Fig 1. Nearly stationary discharge for over 2 s at high beta (107736). (a) Plasma current, NB power (200 ms average; the power is modulated to maintain constant stored energy), and EC power. The transformer current is fixed from 2.0 s onward. (b) β_N , β_p , and l_i . β_N is held constant by the NB feedback control. There is a very slow broadening of the current profile indicated by the decreasing l_i .

MODELING OF PROPOSED DIII-D DISCHARGES

- Normalize diffusivity to low-current, ECCD supported plasmas.
- Compare evolution with (ECCD) and without (ECH) electron cyclotron current drive

CONCLUSIONS:1

- A framework has been devised to generate plasma equilbria having profiles consistent with both transport physics and a 100% bootstrap source for plasma current.
- 2. Such steady tokamak discharges will exist provided thermal diffusivity depends weakly on magnetic shear
 - Profiles satisfy coupled heat-diffusion flux-diffusion system.
 - Plasma current proportional $~Ip \propto n1/2~P1/3~(a/R)1/12,~T(0) \propto P2/3$

CONCLUSIONS: 2

- 3. But, steady -state discharges can be incompatible with 100% bootstrap current if diffusivity decreases strongly with increasingly negative magnetic shear.
- 4. By construction, toroidal field enters through β_{tor} limit and q(0)
 - It remains for stability limits to be evaluated for plasmas with transport-determined profiles
 - Shape will be a parameter
- 5. In present tokamaks, such as DIII-D, NBI current drive competes with bootstrap current.