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  ISSUES

• Ultimate goal is a steady-state tokamak
   reactor with  Q ≥ 10.

- Thermonuclear heating drives  only bootstrap current

• Experiments to investigate 100% bootstrap tokamaks
   must use heating with no current drive capabilities:

 Gyrotrons ,  Minority ICRF



EXPERIMENTAL RECIPE
1.Form initial low-density discharge with flat, high q-profile

2.Turn off transformer; Vloop → 0

3. Start central ECH  ( P > 3 MW) ; increase density to 5·1019m-3

4.Wait for several current relaxation times

5.Plasma Response ??

• Settle into 100% bootstrap discharge
• Continues Current Decay
• Disrupt



SELF-CONSISTENT  MODELING  OF
 HIGH BOOTSTRAP  DISCHARGES

• Model 100% bootstrap tokamak discharges   with self- consistent  transport.

- Coupled fast heat transport system and    slow poloidal field diffusion.

- Use nondimensional approach

 - Heat diffusion coefficent is an analytic
        formula with physics properties given
        by construction
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STEADY - STATE COUPLED
DIFFUSION LOOPS:

CYLINDRICAL MODEL
• Assume circular tokamak, fixed density and heating profile,  j=jbs

• Model will give scaling properties vs. B, Ip , ne , Paux , etc.
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GYROBOHM DIFFUSIVITY

• Diffusivity constructed to have properties observed in tokamak
    experiments
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1. GyroBohm scaling; transport independent of β

2. Flat density profile

3. Experimental  confinement time depends only poloidal field
    (ie only on plasma current)

• Poloidal field enters diffusivity; transport independent of toroidal
  field.



SIMPLIFIED   NONDIMENSIONAL
EQUATION

• Introduce nondimensional variables; τ = T/T(0) ,  u = r/a , uo = ∆/a

• Second order  eigenvalue equation
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• Solution  determines value of λ and hence the relation between P and To



SOLUTIONS

• Nondimensional profiles for no critical gradient
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EIGENVALUE DETERMINES CENTRAL
TEMPERATURE

1. Numerical Solution determines that eigenvalue λ = 0.47

- Normalizing Cχ to DIII-D Discharges  yields Cχ = 0.05

- Evaluation of central temperature is

T(0)3/2 = 0.60·PMW (R/a)1/2 Cbs

• Temperature depends only on P2/3 (R/a)1/3

- No dependence on density , size, or toroidal field.

- Special case of gyroBohm scaling at constant βp  (or β)



RESULTS AND SCALING

• GyroBohm Confinement, ≈100%Bootstrap  no critical
   gradient
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SOLUTIONS WITH CRITICAL
GRADIENT

•  Critical scale length equal to minor radius.

• Eigenvalue doesn’t change much ( λ = 0.45 )
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FULL TORIDAL MODEL AND
COMPATIBILIY WITH NEGATIVE

SHEAR

• 2- Dimensional model couples  solution to 2D Grad - Shafranov
      equilibrium with  1D heat transport equation.

• Equations define the model.

1. Non dimensional Grad-Shafranov equation
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MORE EQUATIONS

2. Heat transport equation has many physics processes

  Pheat
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• Critical temperature gradient

• GyroBohm heat diffusion

• Gradients only with respect flux functions

• Confinement depends only on plasma current; no TF

• No dependence of diffusivity on β

• Overall magnetic shear dependence improves confinement



  COMPATIBILITY

• Combined heat and and plasma current sources lead to
   compatibility criterion

• U = I´/I  is related to magnetic
   shear

• Implicit equation for magnetic
    shear

• For negative magnetic shear,
   a solution may not be available U = i´/ i
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LONG DURATION PULSE IN DIII-D

• Thermal diffusivity normalized to this shot
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Fig 1.  Nearly stationary discharge for over
2 s at high beta (107736). (a) Plasma
current, NB power (200 ms average; the
power is modulated to maintain constant
stored energy), and EC power. The
transformer current is fixed from 2.0 s
onward. (b) βN, βp, and li. βN is held
constant by the NB feedback control. There
is a very slow broadening of the current
profile indicated by the decreasing li.



MODELING OF  PROPOSED DIII-D
DISCHARGES

 • Normalize diffusivity to low-current, ECCD supported plasmas.

• Compare evolution with (ECCD)  and without (ECH) electron cyclotron
current drive

5 MW ECCD at  0.5 sec 5 MW ECH at 0.5 SEC



CONCLUSIONS:1

1. A framework has been devised to generate plasma equilbria

   having profiles consistent with both transport physics and a

     100% bootstrap source for plasma current.

2. Such steady tokamak discharges  will exist provided

    thermal diffusivity depends weakly on magnetic shear

• Profiles satisfy coupled heat-diffusion  flux-diffusion system.

• Plasma current proportional  Ip ∝  n1/2 P1/3  (a/R)1/12,
   T(0) ∝  P2/3



CONCLUSIONS: 2
3. But,  steady -state discharges can be incompatible with  100%

     bootstrap current if diffusivity decreases strongly with

     increasingly negative magnetic shear.

4. By construction, toroidal field enters through βtor limit  and q(0)

• It remains for stability limits to be evaluated for plasmas
   with transport-determined profiles

• Shape will be a parameter

5.  In present tokamaks, such as DIII-D,  NBI current drive
    competes with bootstrap current.


