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| SSUES

- Ultimate goal Is a steady-state tokamak
reactor with Q = 10.

- Thermonuclear heating drives
only bootstrap current

e Experimentsto investigate 100% bootstrap tokamaks
must use heating with no current drive capabilities:

Gyrotrons, Minority ICRF



EXPERIMENTAL RECIPE

1.Form initial low-density discharge with flat, high g-profile

2.Turn off transformer; Viogp — O

3. Start central ECH (P >3 MW) ; increase density to 5:1019m-3

4.\Wait for several current relaxation times

5.Plasma Response ?7?

 Settleinto 100% bootstrap discharge
e Continues Current Decay
 Disrupt



SELF-CONSISTENT MODELING OF
HIGH BOOTSTRAP DISCHARGES

- Model 100% bootstrap tokamak discharges
with self- consistent transport.

- Coupled fast heat transport system and
slow poloidal field diffusion.

- Use nondimensional approach

- Heat diffusion coefficent isan analytic
formula with physics propertiesgiven
by construction



ADVANCED TOKAMAK NONLINEAR TRANSPORT COUPLINGS
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STEADY - STATE COUPLED
DIFFUSION LOOPS:
CYLINDRICAL MODEL

« Assume circular tokamak, fixed density and heating profile, j=jbs

« Model will give scaling propertiesvs. B, Ip, ne, Paux , €tc.
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GYROBOHM DIFFUSIVITY

 Diffusivity constructed to have properties observed in tokamak
experiments
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1. GyroBohm scaling; transport independent of 3
2. Flat dengity profile

3. Experimental confinement time depends only poloidal field
(ie only on plasma current)

 Poloidal field entersdiffusivity; transport independent of toroidal
field.



SIMPLIFIED NONDIMENSIONAL
EQUATION

e Introduce nondimensional variables, t=T/T(0), u=r/a,uo=~Aa

» Second order eigenvalue equation

dt _ _1_ /(1), ¥C v _ _ z.s(dr)

u A \/(A) +u5T°-5 du Au du
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A = Cx (a) (ZT[)Z M Y2 -|-03/2 - )\(uo) =0.47

e Solution determinesvalue of A and hencetherelation between P and To



SOLUTIONS

* Nondimensional profilesfor no critical gradient
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EIGENVALUE DETERMINES CENTRAL
TEMPERATURE

1. Numerical Solution determinesthat eigenvalue A = 0.47
- Normalizing Cy to DII1-D Discharges yields Cy = 0.05
- Evaluation of central temperatureis

T(0)32 = 0.60-Pvw (R/a)V2 Cps

» Temperature depends only on P23 (R/a)1/3
- No dependence on density , size, or toroidal field.

- Special case of gyroBohm scaling at constant 3p (or (3)



RESULTSAND SCALING

- GyroBohm Confinement, =100% Bootstrap no critical
gradient
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SOLUTIONSWITH CRITICAL
GRADIENT

e Critical scalelength equal to minor radius.

* Eigenvalue doesn’t change much (A =0.45)
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FULL TORIDAL MODEL AND
COMPATIBILIY WITH NEGATIVE
SHEAR

* 2- Dimensional model couples solution to 2D Grad - Shafranov
equilibrium with 1D heat transport equation.

- Equations define the modd.

1. Non dimensional Grad-Shafranov equation

9100 0P _ , dp
Yautau T vz = _)\1dl11




MORE EQUATIONS

2. Heat transport equation has many physics processes

% :Ceo(snMo.sA*To.s (a-l—) a-l— _I
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e Critical temperature gradient

e GyroBohm heat diffusion

» Gradientsonly with respect flux functions

« Confinement depends only on plasmacurrent; no TF
* No dependence of diffusivity on 3

» Overall magnetic shear dependence improves confinement



COMPATIBILITY

« Combined heat and and plasma current sourceslead to
compatibility criterion

GBy-1/2
(0 /3) +\/(p/6)2 +}‘2(g)8£pe—au
U:_p’ =
2(1-y)

- U =17/l isrelated to magnetic
shear

 Implicit equation for magnetic
shear

» For negative magnetic shear,

LHS -solution

LHS no
solution

a solution may not be available




LONG DURATION PULSE IN DIII-D

e Thermal diffusivity normalized to this shot

d/dt (transformer current) =0

107736 __
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Fig 1. Nearly stationary discharge for over
2 s at high beta (107736). (a) Plasma
current, NB power (200 ms average; the
power is modulated to maintain constant
stored energy), and EC power. The
transformer current isfixed from 2.0 s
onward. (b) BN, Bp, and |;. BN isheld
constant by the NB feedback control. There

iIsavery slow broadening of the current
profileindicated by the decreasing ;.



MODELING OF PROPOSED DIII-D
DISCHARGES

« Normalize diffusivity to low-current, ECCD supported plasmas.

« Compare evolution with (ECCD) and without (ECH) electron cyclotron
current drive

N Pee=5MW, ip=.3 no ECCD
Ppp=SMW, 5p=.3 with ECCD 3
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CONCLUSIONS: 1

1. A framewor k has been devised to generate plasma equilbria
having profiles consistent with both transport physicsand a
100% bootstrap sourcefor plasma current.

2. Such steady tokamak discharges will exist provided
thermal diffusivity depends weakly on magnetic shear

* Profiles satisfy coupled heat-diffusion flux-diffusion system.

e Plasma current proportional Ip 0nl/2pP1Y3 (a/R)1/12,
T(0) O P2/3



CONCLUSIONS: 2

3. But, steady -state discharges can be incompatible with 100%
bootstrap current if diffusivity decreases strongly with
Increasingly negative magnetic shear.

4. By construction, toroidal field entersthrough Btor limit and g(0)

It remainsfor stability l[imitsto be evaluated for plasmas
with transport-determined profiles

» Shape will be a parameter

5. In present tokamaks, such asDII1-D, NBI current drive
competes with bootstrap current.



