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Introduction and Motivation

® Global gyrokinetic code GYRO contains all physics of low frequency (<< ion cyclotron) plasma
turbulence assuming only that the ion gyroradius is less than magnetic field gradient length
* Nonlinear and basic ITG with adiabatic electrons
® Electrons (trapped and passing) electromagnetic and finite 3
® Collisions
* Real tokamak geometry
* Finite p*

® Continuum (fluid-like) methods in 5-dimensional space (r, 6, n, €, A)
® 2-modes of operation:
* flux-tube with cyclic boundary conditions
to be compared with Dorland 's gyrokinetic flux tube code GS2 effectively p*-> 0
No ExB or profile effects but otherwise identical physics and capability
® full radius or wedge -tube with non-cyclic BC and An=5-10 p* small but finite

® Why global full radius? Shear in the ExB velocity known to have a powerful stabilizing effect.

But shear in the diamagnetic velocity can be just as large and cannot be treated at p* = 0.
Flux-tube codes at p*-> 0 have only gyroBohm scaling and no non-local effects.
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Key questions addressed

® How and where does shear in the diamagnetic mode phase velocities ( Yshear O pO) break
gyroBohm scaling to Bohm or worse?
° Basic paradigm from Garbet and Waltz (APS '95):
Velocity shear comparable to linear ballooning mode rate (Yshear > Y) stabilizes,
hence expect gyroBohm scaling well above threshold but Bohm or worse near
threshold ( small Y) with strong shear. There is no single power law in pO
XgB = pXB and X 0O XgB ( 1 - pO/pLkrit) with plkrit = 1- LT/ LTcrit
® How do correlation lengths and times scale in a Bohm regime?
® Technical questions:
® How do flux-tube simulations compare with non-cyclic BC simulations without profile
variation, i.e. can we find " benign boundary" conditions ?
* When adding profile variation, do we need to add sources?
* How large must the radial simulation slice be to get an accurate measure of the local X ?
® How "local" is turbulent diffusion? Is there any "action at a distance™ ?

® |nitial restriction to ITG with adiabatic electrons s-a circular geometry.
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Noncyclic BC radial slice reproduces gyroBohm flux tube diffusion
at the slice center for weak profile shear
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® 80 ps noncyclic BC radial slice with flat profiles identical to cyclic flux tube gyroBohm result
hence zero-value BC with external edge buffer and damper zones are "benign™

® Adding weak profile variation with sources shows only slight profile stabilization and
remains gyroBohm at ps = 0.0050 -> 0.0025 ( Typical DIII-D)
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Need adaptive source to prevent “false Bohm scaling

| |=—source pS:0.0025 |
—source  p_=0.0050 ﬁ ﬁ —(a/L) p.= 0.0025
2 1 |===no source ] ol —(alL),
g AL LA —(a/L) p,= 0.0050
I o
15 - =3 _
= | - | adaptive source on
N, T = | equillibrum
ol £, gradient
207 = | maintained
=< v
05 | 1
ﬁ j a/L.=1.9
i i all =1.0
oL ... T R AR R S O““\‘“‘\““i““\““\““
0.2 : : : : : 0.8 0.2 0.3 0.4 0.5 0.6 0.7
r/a

® Small ps scaled deviations from the equilibrium profiles caused by the n=0
perturbations in the absence of sources can cause "false” Bohm scaling nearer threshold.
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Slice approach valid: X at the norm pt. is unchanged with slice size
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® |n cases without significant profile shear, gyroBohm scaling can persist even close to
threshold (a/LT = 1.9) although we can see a non-local subcritcal turbulence effect at
threshold (a/LT =1.5) .
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To find Bohm scaling, we increase the density gradient which lowers Ymax and increases
diamagnetic ExB shear, and we increase the profile shearing S from2to 4 and 6

T(r) =To(L-r/aS)At n(r) =To (1-r/aS)An keeping a/LT and a/Ln fixed at r/a =0.5

(@/LT=3, a/Ln=1)-> (a/LT=3, a/Ln=2.5) decrease nj from3t0 1.3 & Ymax from 0.13 to 0.06
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® Bohm scaling or worse results at the norm point r/a= 0.5 with increased shearing S =4 ->6
® At weaker shear and small ps, approach gyroBohm scaled "flat" (no profile ) results

® GyroBohm scaling still results where profile shearing rates are weak Yshear <Ymax
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® Shearing rate approached growth rate only near norm point r/a= 0.5
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Nonlocal transport “action at a distance" possible
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® Modifying the temperature gradient at a distance of 10x the correlation length can change the
local transport in a Bohm scaled regime

The transport levels are more than 10x lower than where we started at S=2,a/LT=3,and a/Ln = 1.

Speculate that the non-local effect is mediated by the temperature perturbations
associated with the n=0 zonal flows
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Conclusions from ITG adiabatic electron simulations

® We have found "benign" noncyclic BC for a radial slice which reproduces the flux tube.

® An "adaptive" source keeps the radial slice equilibrium profiles fixed and prevents "false"
Bohm scaling from the build up of long-wave n= 0 zonal flows

® For moderate profile variation, small density peaking, and weak profile shear (Yshear <Ymax)
* profile stabilization is weak and gyroBohm scaling results, and
* low level transport can be obtained at inner stable radii when outer radii are unstable.

® For strong profile variation, peaked density gradients, strong ExB profile shear (Yshear=Ymax)
e profile stabilization is strong and Bohm scaling (or worse) can result
e although gyroBohm (no profile flux tube-like) results can be approached at low p*

e Bohm scaled diffusion has tc independent of p* and Lc O ps0-

® "action at a distance" obtained near threshold
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Newest work with comprehensive physics

® Since previous study with ITG adiabatic electrons in s-a circular geometry, we are now treating

actual DIIID profiles form the L- mode rho-star scaling experiments with full physics capability
of GYRO.

® |n particular we have
® Electrons (trapped and passing), electromagnetic and finite 8 with collisions.
° Real tokamak geometry with Miller local equilibria input from experiment.
* Toroidal velocity profiles for parallel shear driving Kelvin-Helmholtz ITG

* Computed toroidal viscosity q,and e-i energy exchange rate ( x az) as well as energy and
particle diffusivities X; Xe Dj De
* Experimental profiles E, used to compute the very important equilibrium ExB
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DIIID L-mode rho-star scaling shots: ITG only

® B=2.1T lowrho starshot. ITG withno Ve Or ExB shear

-Smaller low-resolution boxes compare well with larger high-resolution boxes.
-Slices centered at different r/a have “good overlap”.

-With ExB shear (even with dvq/dr Kelvin-Helmholtz), ITG needs electron drive to get transport
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DIID L-mode rho-star scaling shots: full physics

® B=1.050 high rho-star shot.
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Full physics (save collisions)
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Good “overlap” between r/a=0.5 and 0.6 norm centers validates slice approach
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® atr/a =.6 both GRYO runs and experiment close to Bohm scaling ratios

comment ratio
B, experiment 21T 1.05T 0.50
Xigs = (CJa )p,2 | €xperimental | 1.018 m*/sec | 1.934 m*fsec | (0.56)"
norm value
p./a experiment | 0.00257 0.00400 (0.64)*
Xi ! X8 experiment 2.34 1.24 0.55
Xi ! X8 full phys 3.9 2.7 0.69
Xi ! X no collisions | 6.0 3.6 0.60
Xi ! Xige no ExB 5.0 4.2 0.84
Xi ! Xigs flux tube 8.1 7.7 0.96
NoExB

We need a sensitivity study to determine X'/XgB changes with errors in profile.

Typically profiles are 10% but gradient lengths are 30%. Very likely < 30% lower
temperature gradients and < 30% higher shear rates will compensate.
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Rotational shear effect direction of avalanches
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® Avalanches appear with both Bohm (here) scaling and gyroBohm scaling

® Larger rho-star has higher velocity avalanches
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Looking for the trapped electron branch

® B=1.05T rla=.5
The ITG branch at negative w s clearly visible in this nonlinear spectrum.

We would love to see the positive @ TEM branch show up !
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Comments and caveats

® Curiously, density correlation lengths scale as p* and auto-correlation times as p* in
contrast to the simple ITG Bohm scaled cases (i.e. [p*]*°and [p*]°).

® This maybe related to another difference: Although the ExB is clearly important, the

EXB shear rate in the two shots is nearly the same ( by experimental design), i.e. in
contrast NOT scaled with p*. Hence NOT clear that the mechanism for the broken
gyroBohm is the same as the simple ITG cases.

® Runs made with root(m/m,) 20 not 60. We know this does not have much effect on
linear stability, but we have not checked nonlinear runs.

® We need to repeat the runs at larger radial slices to be sure non-local effects are small.

® These runs are fairly low beta, but we have not yet seen any magnetic flutter transport
beyond a few percent.

The full physics runs previously took 5-24hr restarts on 128ps seaborg.nersc.gov

....7-10 day turn-around. Recently improved processor scaling to 1024ps have
256ps runs complete in 24hr.
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Conclusions

® Need to finish GYRO-GS2 benchmark runs for DIIID shot profiles in the flux-tube
no profile or ExB shear limit.

® Work in progress requires detailed experimental error analysis to determine if
GYRO power flows are in agreement with experiment within error bars, however

® Preliminary results suggest the Bohm scaling character is in agreement with the
Bohm character of L- mode experiments.

® Moving on to understand why H - mode p* scaled shots have gyroBohm scaling.

Visit the GYRO web site http://web.gat.com/comp/parallel/  _ for literature and movies.
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ADDITIONAL MATERIAL
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® Small ps scaled deviations from the equilibrium profiles caused by the n=0
perturbations in the absence of sources significantly change the temperature gradient.
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® We have constructed an "adaptive source" to preserve the equilibrium:
flux surface average <> n=0 gyrokinetic equation with source S
d<fo(€)>/dt + rld/drr[F(€)] = S(€
where T(€) =< 2Zn>0 [ps inglr @n]*fn(€) > is the fluxatenergy €
S(e)= ot dt'/Teq exp[(t-t)/Teq ] FO,1(€)

where F0,1 isthe cos[(1,2)Ttx/L] longwave components of r-1d/drr[I ].

Teq =50 a/cs compared to run time 1000 a/cs

- S is "adaptive ": It "can" change fast, but after the nonlinear saturation, it in fact
changes only slowly. Restarts with a "frozen" S give the same result.

- Being "long wave" and constant in time, the adaptive source acts as a "true "
source.

-%o GENERAL ATOMICS
R.E. Waltz IAEA FEC 2002



® Diamagnetic EXB shear is big contributor to breaking gyroBohm and decreasing transport
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® n>0 radial correlation lengths in the Bohm scaled region (r/a = 0.5) scale as L¢ O ps0-> (i.e. 1.7X)

gyroBohm scaled region (r/a = 0.65) scale as L¢ O ps (i.e. 3X)
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® DII-D L-mode p* scans by 1.6 X

show no changein tc/[cs/a], Lc2/Tc intermediate

between Bohm and gyroBohm, and Lc intermediate scaling between ps and (ps R)0-2
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® Difficult to measure n=0 zonal flow radial correlation lengths large and insensitive to ps

n=0 point_r cor_dr=56.000
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