TH/P1-19

Comprehensive Gyrokinetic Simulations of Tokamak Turbulence at Finite Relative Gyroradius

R.E. Waltz, J. Candy, and M.N. Rosenbluth

General Atomics San Diego, California 92186-5608

Supported by the SciDAC Plasma Microturbulence Project (PMP) 19th IAEA Fusion Energy Conference (FEC 2002), Lyon, France, October 14-20, 2002

R.E. Waltz IAEA FEC 2002

Introduction and Motivation

- Global gyrokinetic code GYRO contains all physics of low frequency (<< ion cyclotron) plasma turbulence assuming only that the ion gyroradius is less than magnetic field gradient length
 - Nonlinear and basic ITG with adiabatic electrons
 - Electrons (trapped and passing) electromagnetic and finite $\boldsymbol{\beta}$
 - Collisions
 - Real tokamak geometry
 - Finite ρ*
- Continuum (fluid-like) methods in 5-dimensional space (r, θ , n, ε , λ)
- 2-modes of operation:
 - flux-tube with cyclic boundary conditions
 - to be compared with Dorland 's gyrokinetic flux tube code GS2 effectively $\rho^* \rightarrow 0$ No ExB or profile effects but otherwise identical physics and capability
 - full radius or wedge -tube with non-cyclic BC and Δn =5-10 ρ^* small but finite
- Why global full radius? Shear in the ExB velocity known to have a powerful stabilizing effect. But shear in the diamagnetic velocity can be just as large and cannot be treated at ρ* = 0. Flux-tube codes at ρ* -> 0 have only gyroBohm scaling and no non-local effects.

Key questions addressed

 How and where does shear in the diamagnetic mode phase velocities (Yshear ∝ ρ*) break gyroBohm scaling to Bohm or worse?

- Basic paradigm from Garbet and Waltz (APS '95):
 - Velocity shear comparable to linear ballooning mode rate ($\gamma_{shear} > \gamma$) stabilizes, hence expect gyroBohm scaling well above threshold but Bohm or worse near threshold (small γ) with strong shear. There is no single power law in ρ *.

 $\chi_{gB} = \rho * \chi_B$ and $\chi \propto \chi_{gB} (1 - \rho * / \rho * crit)$ with $\rho * crit = 1 - LT / LT crit$

- How do correlation lengths and times scale in a Bohm regime?
- Technical questions:

• How do flux-tube simulations compare with non-cyclic BC simulations without profile variation, i.e. can we find "benign boundary" conditions ?

- When adding profile variation, do we need to add sources?
- How large must the radial simulation slice be to get an accurate measure of the local χ ?
- How "local" is turbulent diffusion? Is there any *"action at a distance"*?
- Initial restriction to ITG with adiabatic electrons s-α circular geometry.

Noncyclic BC radial slice reproduces gyroBohm flux tube diffusion at the slice center for weak profile shear

- 80 ρs noncyclic BC radial slice with flat profiles identical to cyclic flux tube gyroBohm result hence zero-value BC with external edge buffer and damper zones are "benign"
- Adding weak profile variation with sources shows only slight profile stabilization and remains gyroBohm at $\rho_S = 0.0050 \rightarrow 0.0025$ (Typical DIII-D)

Need adaptive source to prevent "false Bohm scaling"

• Small ρ_S scaled deviations from the equilibrium profiles caused by the n=0 perturbations in the absence of sources can cause "false" Bohm scaling nearer threshold.

Slice approach valid: χ at the norm pt. is unchanged with slice size

In cases without significant profile shear, gyroBohm scaling can persist even close to threshold (a/LT = 1.9) although we can see a non-local subcritcal turbulence effect at threshold (a/LT = 1.5).

To find Bohm scaling, we increase the density gradient which lowers γ_{max} and increases diamagnetic ExB shear, and we increase the profile shearing S from 2 to 4 and 6

T(r) = T₀ (1 - r/a ^S) α_T , n(r) = T₀ (1 - r/a ^S) α_n keeping a/LT and a/L_n fixed at r/a =0.5

(a/LT=3, a/Ln=1) - > (a/LT=3, a/Ln=2.5) decrease η_i from 3 to 1.3 & γ_{max} from 0.13 to 0.06

- Bohm scaling or worse results at the norm point r/a= 0.5 with increased shearing S = 4 -> 6
- At weaker shear and small ρ_S, approach gyroBohm scaled "flat" (no profile) results
- GyroBohm scaling still results where profile shearing rates are weak Yshear < Ymax

• Shearing rate approached growth rate only near norm point r/a= 0.5

 $\gamma_{\text{shear}} \sim \gamma_{\text{mode}} \equiv r/q \ \partial (q/r \ V_{\text{mode phase}}) / \partial r$

Nonlocal transport "action at a distance" possible

• Modifying the temperature gradient at a distance of 10x the correlation length can change the local transport in a Bohm scaled regime

The transport levels are more than 10x lower than where we started at S=2, a/LT = 3, and a/Ln = 1.

Speculate that the non-local effect is mediated by the temperature perturbations associated with the n=0 zonal flows

Conclusions from ITG adiabatic electron simulations

- We have found "benign" noncyclic BC for a radial slice which reproduces the flux tube.
- An "adaptive" source keeps the radial slice equilibrium profiles fixed and prevents "false" Bohm scaling from the build up of long-wave n= 0 zonal flows
- For moderate profile variation, small density peaking, and weak profile shear (Yshear <Ymax)
 - profile stabilization is weak and gyroBohm scaling results, and
 - low level transport can be obtained at inner stable radii when outer radii are unstable.
- For strong profile variation, peaked density gradients, strong ExB profile shear (Yshear≈Ymax)
 - profile stabilization is strong and Bohm scaling (or worse) can result
 - although gyroBohm (no profile flux tube-like) results can be approached at low ρ^*
 - Bohm scaled diffusion has τ_C independent of ρ^* and $Lc \propto \rho_S ^{0.5}$
 - "action at a distance" obtained near threshold

Newest work with comprehensive physics

- Since previous study with ITG adiabatic electrons in s-α circular geometry, we are now treating actual DIIID profiles form the L- mode rho-star scaling experiments with full physics capability of GYRO.
- In particular we have
 - Electrons (trapped and passing), electromagnetic and finite β with collisions.
 - Real tokamak geometry with Miller local equilibria input from experiment.
 - Toroidal velocity profiles for parallel shear driving Kelvin-Helmholtz ITG
 - Computed toroidal viscosity η_{ϕ} and e-i energy exchange rate (x a²) as well as energy and particle diffusivities $\chi_i \ \chi_e \ D_i \ D_e$
 - Experimental profiles E_r used to compute the very important equilibrium ExB

DIIID L-mode rho-star scaling shots: ITG only

B=2.1T low rho_star shot. ITG with no v_o or ExB shear
 Smaller low-resolution boxes compare well with larger high-resolution boxes.
 Slices centered at different r/a have "good overlap".

-With ExB shear (even with dv_{ϕ}/dr Kelvin-Helmholtz), ITG needs electron drive to get transport

/u/waltz/eavro/sim/n11.1x.6_144sITG_cNLurE1HK_2eta2_s [1.1.3] [Sun Mar 10 08:19:24 PST 2002]

DIIID L-mode rho-star scaling shots: full physics

B=1.050 high rho-star shot. Full physics (save collisions)

Good "overlap" between r/a=0.5 and 0.6 norm centers validates slice approach

	comment			ratio
Β _T	experiment	2.1 T	1.05 T	0.50
$\chi_{i-\alpha B} = (c_s/a)\rho_s^2$	experimental	1.018 m ² /sec	1.934 m ² /sec	(0.56) ⁻¹
	norm value			
ρ _s /a	experiment	0.00257	0.00400	(0.64) ⁻¹
χ i / χ i-gB	experiment	2.34	1.24	0.55
χ i / χ i-gB	full phys	3.9	2.7	0.69
χ i / χ i-gB	no collisions	6.0	3.6	0.60
χ i / χ i-gB	no ExB	5.0	4.2	0.84
χ _i / χ _{i-gB}	flux tube noExB	8.1	7.7	0.96

• at r/a = .6 both GRYO runs and experiment close to Bohm scaling ratios

We need a sensitivity study to determine χ'/χ_{gB} changes with errors in profile. Typically profiles are 10% but gradient lengths are 30%. Very likely < 30% lower temperature gradients and < 30% higher shear rates will compensate.

Rotational shear effect direction of avalanches

- Avalanches appear with both Bohm (here) scaling and gyroBohm scaling
- Larger rho-star has higher velocity avalanches

Looking for the trapped electron branch

• B = 1.05T r/a= .5

The ITG branch at negative ω is clearly visible in this nonlinear spectrum.

We would love to see the positive ω TEM branch show up !

- Curiously, density correlation lengths scale as ρ* and auto-correlation times as ρ* in contrast to the simple ITG Bohm scaled cases (i.e. [ρ*]^{0.5} and [ρ*]⁰).
- This maybe related to another difference: Although the ExB is clearly important, the EXB shear rate in the two shots is nearly the same (by experimental design), i.e. in contrast NOT scaled with ρ^* . Hence NOT clear that the mechanism for the broken gyroBohm is the same as the simple ITG cases.
- Runs made with root(m_i/m_e) 20 not 60. We know this does not have much effect on linear stability, but we have not checked nonlinear runs.
- We need to repeat the runs at larger radial slices to be sure non-local effects are small.
- These runs are fairly low beta, but we have not yet seen any magnetic flutter transport beyond a few percent.
- The full physics runs previously took 5-24hr restarts on 128ps seaborg.nersc.gov
 7-10 day turn-around. Recently improved processor scaling to 1024ps have
 256ps runs complete in 24hr.

- Need to finish GYRO-GS2 benchmark runs for DIIID shot profiles in the flux-tube no profile or ExB shear limit.
- Work in progress requires detailed experimental error analysis to determine if GYRO power flows are in agreement with experiment within error bars, however
- Preliminary results suggest the Bohm scaling character is in agreement with the Bohm character of L- mode experiments.
- Moving on to understand why H mode ρ^* scaled shots have gyroBohm scaling.

Visit the GYRO web site <u>http://web.gat.com/comp/parallel/</u>______ for literature and movies.

ADDITIONAL MATERIAL

 Small ρ_S scaled deviations from the equilibrium profiles caused by the n=0 perturbations in the absence of sources significantly change the temperature gradient.

• We have constructed an "adaptive source" to preserve the equilibrium:

flux surface average < > n = 0 gyrokinetic equation with source S

 $d \leq f_0(\varepsilon) \geq /dt + r^{-1} d / dr r [\Gamma(\varepsilon)] = S(\varepsilon)$

where $\Gamma(\varepsilon) = \langle \Sigma_{n > 0} [\rho_{S} \text{ inq/r } \phi_{n}]^{*} f_{n}(\varepsilon) \rangle$ is the flux at energy ε $S(\varepsilon) = \int 0^{t} dt' / T_{eq} \exp[(t'-t) / T_{eq}] F_{0,1}(\varepsilon)$

where F 0,1 is the cos [(1,2) π x/L] longwave components of r⁻¹ d/dr r [Γ]. T_{eq} = 50 a/c_s compared to run time 1000 a/c_s

• S is "adaptive ": It "can" change fast, but after the nonlinear saturation, it in fact changes only slowly. Restarts with a "frozen" S give the same result.

• Being "long wave" and constant in time, the adaptive source acts as a "true " source.

• Diamagnetic EXB shear is big contributor to breaking gyroBohm and decreasing transport

• n>0 radial correlation lengths in the Bohm scaled region (r/a = 0.5) scale as $L_C \propto \rho_S^{0.5}$ (i.e. 1.7X)

gyroBohm scaled region (r/a = 0.65) scale as $L_C \propto \rho_S$ (i.e. 3X)

Correlation times τ_c remain invariant to ρ_s , so $\chi \propto L_c^2 / \tau_c \propto \rho_s$ consistent with Bohm [a/LT = 3 a/Ln = 2.5 S = 4]

R.E. Waltz IAEA FEC 2002

• DIII-D L-mode ρ^* scans by 1.6 X show no change in τ_C / [c_S/a], L_C^2 / τ_C intermediate between Bohm and gyroBohm, and L_C intermediate scaling between ρ_S and ($\rho_S R$)^{0.5}

• Difficult to measure n=0 zonal flow radial correlation lengths large and insensitive to ρ_S

[a/LT = 3 a/Ln = 2.5 S = 4]

