Physics of Confinement Improvement of Plasmas with Impurity Injection in DIII–D

Presented by M. Murakami

18th IAEA Fusion Energy Conference Sorrento, Italy

October 7, 2000
Physics of Confinement Improvement of Plasmas with Impurity Injection in DIII–D

1Oak Ridge National Laboratory, Oak Ridge, Tennessee 37381, USA
2University of Wisconsin, Madison, Wisconsin 53706, USA
3General Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA
4Tech-X Corporation, Denver, Colorado 80301, USA
5Lehigh University, Bethlehem, Pennsylvania 18015, USA
6University of California, San Diego, California 92093, USA
7University of Colorado, Boulder, Colorado 80309-0390, USA
8Lawrence Livermore National Laboratory, Livermore, California 94550, USA
9University of California, Los Angeles, California 90095, USA
10Princeton Plasma Physics laboratory, Princeton, New Jersey 08543
11KMS/ERM, Brussels, Belgium
12Georgia Institute of Technology, Atlanta, Georgia 30332, USA
13University of Texas, Austin, Texas 78712, USA
14Massachusetts Institute of Technology, Cambridge, Massachusetts
15University of Alberta, Edmonton, AB T6G2J1, Canada

18th IAEA Fusion Energy Conference
Sorrento, Italy
October 7, 2000
INTRODUCTION

- Confinement improvement in discharges with impurity seeding have been observed in a number of tokamaks:
 - ISX-B (Z-mode)
 - TEXTOR-94 (RI-mode)
 - TFTR, ASDEX, DIII-D, JET, ...

- In the present DIII-D experiment, injection of noble gas (Ne, Ar, Kr) into L-mode edge discharges has produced:
 - Clear confinement improvement (≈ 2)
 - Transport reduction in all transport channels (χ_i by $\times 5$)
 - Simultaneous reduction in long-wavelength turbulence

- These observations provide opportunities to test understanding of theory-based transport models
 - Gyro-kinetic analysis
 ⇒ Synergistic effects of impurity-induced reduction of toroidal drift wave turbulence and ExB shearing suppression
 - Theory-based transport modeling (GLF23)

- Impurity seeding is also a useful tool for:
 - Reduction of heat flux to plasma facing components
 - L-mode edge with improved confinement
 - Internal Transport Barrier control – [E. Doyle: EX6/2]
 - H-mode edge stability control
USN with L-mode edge
- Early NBI $\Rightarrow q_{\text{min}}>1$ to avoid sawtooth
- Ne, Ar, Kr (recycling gas) injected at 0.8 s and 1.2 s, quantity varied
- Run reference discharges with similar control parameters except no impurity puffed
NEON INJECTION PRODUCES HIGHER AND BROADER T_i AND T_e PROFILES, AND MORE PEAKED DENSITY PROFILES

- Density peaking factor: $n_e(0)/\langle n_e \rangle = 1.2 \Rightarrow 1.5$
- Charge Exchange Recombination spectroscopy, showing $n_{Ne}/n_e < 2.2\%$
CONFINEMENT IMPROVEMENT IS CORRELATED WITH STRONG REDUCTION OF TURBULENCE WITH IMPURITY INJECTION

- BES measures density fluctuations ($k_\theta \rho_s < 0.6$) at $\rho = 0.68$

- Reduction of turbulence is also observed by FIR scattering
- Reciprocating probe observed reduction of particle flux $\Gamma \sim \langle \tilde{n}\phi \rangle$ at edge
TRANSP ANALYSIS SHOWS THAT ION THERMAL DIFFUSIVITY DECREASES STRONGLY WITH NEON INJECTION

- $\chi_i(\rho)$ is reduced throughout the profile to the neoclassical level
NEON INJECTION REDUCES TURBULENCE GROWTH RATES AND INCREASES ExB SHEARING RATE

- Gyro-Kinetic Stability (GKS) code is used to calculate linear growth rates based on experimental profiles
- Growth rates (primarily ITG) reduced by main ion dilution, direct mode stabilization with impurities and profile effects
- ExB shearing rate is calculated from radial electric field based on measured V_ϕ, V_θ, and ρ_i of carbon impurity
- Criteria for stabilization: $|\omega_{\text{ExB}}| > \gamma_{\text{max}}$
The initial drop in \(\gamma_{\text{max}} \) triggers the rise of \(\omega_{\text{ExB}} \) with neon injection.

ExB shear suppression is clearly established in the latter phase.
NEON INJECTION REDUCES TURBULENCE GROWTH RATES AND INCREASES ExB SHEARING RATE

- Gyro-Kinetic Stability (GKS) code is used to calculate linear growth rates based on experimental profiles
- Growth rates (primarily ITG) reduced by main ion dilution, direct mode stabilization with impurities and profile effects
- ExB shearing rate is calculated from radial electric field based on measured V_ϕ, V_θ, and p_i of carbon impurity
- Criteria for stabilization: $|\omega_{\text{ExB}}| > \gamma_{\text{max}}$
PROMPT LOCAL TRANSPORT REDUCTION AND LOW-k TURBULENCE SUPPRESSION RESULTS FROM AN INCREASING ROTATION GRADIENT ENHANCING THE ExB SHEARING

- Some density peaking \Rightarrow Only modest effect on γ_{max}
- Rapid change in V_{ϕ} \Rightarrow Increase in ∇V_{ϕ} \Rightarrow Increase in ω_{ExB} \Rightarrow reduce low-k fluctuations
DIRECT IMPURITY EFFECTS ACT SYNERGISTICALLY WITH THE ExB SHEARING SUPPRESSION

Impurity injection → Reduction of turbulence growth rate

Plasma profile modifications → ExB shear suppression

Increasing rotation & pressure and their gradients → Reduced turbulence

Reduced transport → Reduced turbulence ($\omega_{\text{ExB}} > \gamma_{\text{lin}}$)
PLASMA PROFILES ALSO EVOLVE, HELPING TURBULENCE STABILIZATION

Can we separate these three effects?

- Direct impurity effects for \(\gamma_{\text{max}} \)
- ExB shear suppression
- Other profile evolutions
ROLES OF DIRECT IMPURITY EFFECTS AND ExB SHEAR SUPPRESSION ARE Explored WITH A THEORY-BASED TRANSPORT MODEL

- Gyro-Landau Fluid (GLF23) model allows to study both effects on transport
 [R. Waltz et al.: Phys. Plasmas ‘97]
- The GLF23 model was carried out using a time-dependent transport code, NTCC Demonstration Code
- The National Transport Code Collaboration (NTCC) project is to develop:
 — Library of transport code modules
 — Web-invokable data server and demonstration code
- DIII-D Neon shots have been selected as the principal test case for the NTCC Demonstration Code
- The code solves T_i and T_e equations with inputs of:
 - $n_e(\rho,t)$ and $V_\phi(\rho,t)$
 - Time-dependent sources, sinks and equilibria from TRANSP
INCREASE IN ExB SHEARING RATE IS A NECESSARY CONDITION FOR CONFINEMENT IMPROVEMENT

Simulations are used to test:

- Effects of ExB shearing from experimental ω_{ExB} to 0
- Effects of changing Z_{eff} (3.2 → 1.4) and $n_e(\rho)$ after the improved state is established

⇒ Neon injection may be used as a trigger
CONCLUSIONS

• External impurity injection in L–mode edge discharges in DIII–D produced:
 — Clear confinement improvement ($\times 2$ in τ_E and S_n)
 — Reduction in all transport channels (χ_i to neoclassical)
 — Simultaneous reduction of long-wavelength turbulence

• Reduction in fluctuations and ion thermal transport is attributed to two impurity-induced effects working synergistically: reduction of toroidal drift wave turbulence and ExB shear suppression

• Impurity injection is observed to trigger reduction of long-wavelength turbulence by increasing the gradient of toroidal rotation which enhances ExB flow shear

• Time-dependent simulations with GLF23 model show the dominant role of ExB shearing and a possibility of using impurity injection as a trigger
 — Remove impurity source after obtaining confinement improvement