LONG-PULSE HIGH-PERFORMANCE DISCHARGES IN THE DIII–D TOKAMAK

by T.C. Luce
General Atomics
in collaboration with

1General Atomics
2Oak Ridge National Laboratory
3Lawrence Livermore National Laboratory,
4University of Texas at Austin
5Columbia University
6Princeton Plasma Physics Laboratory
7University of California at Irvine
8Lehigh University
9Sandia National Laboratories
10University of California Los Angeles
11University of California San Diego

Presented at
Fusion Energy Conference 2000
Sorrento, Italy
October 7, 2000
The DIII–D team is pursuing research to establish the basis for a high fusion gain steady-state tokamak. This requires simultaneously:

- High fusion power $\propto \beta$
- High bootstrap fraction $\propto \beta_p$
- High fusion gain $\propto \beta \tau_E$

To achieve this on DIII–D at reactor-relevant parameters will require several control tools — density control, pressure control, off-axis non-inductive current drive, and to reach the ultimate performance limits, direct control of MHD instabilities.
OUTLINE — HIGHLIGHTS

- Progress in long-pulse advanced tokamak development since the 1998 IAEA meeting
 - \(\beta_N H_{89} \sim 10 \) for \(5 \tau_E \)
 - \(\beta_N H_{89} \sim 9 \) for \(16 \tau_E \)

- Stability
 - Resistive wall modes are the \(\beta \) limiting instability in most discharges with \(q_{\text{min}} \geq 1.5 \)
 - Neoclassical tearing modes limit \(\beta \) in discharges with \(q_{\text{min}} \sim 1 \) and sometimes limit the duration of higher \(q_{\text{min}} \) discharges

- Confinement
 - Local heat diffusivity on high \(q_{\text{min}} \) plasmas similar to that found on conventional sawtoothing H-mode plasmas
 - Electron and ion temperature profiles are well simulated by an ITG model including \(E \times B \) shear

- Current evolution
 - Non-inductive current fraction is 60%–75% in high \(q_{\text{min}} \) discharges
 - Remaining inductive current is peaked off-axis

- Control tools
 - Density and \(\beta \) control demonstrated by operating at \(\beta_N H_{89} \sim 7 \) for \(6.3 \) s with \(\beta \) at >90% of the 2/1 tearing mode limit
SIGNIFICANT PROGRESS HAS BEEN MADE IN LONG-PULSE HIGH PERFORMANCE

- Open symbols: $q_{\text{min}} \sim 1$
- Filled symbols: $q_{\text{min}} > 1.5$

Large points with numbers are discharges since 1998 IAEA

 ITER Reference

DIII-D Advanced Tokamak Target

DIII-D
NATIONAL FUSION FACILITY
SAN DIEGO
ADVANCED TOKAMAK DISCHARGES SEEK TO MAXIMIZE FUSION GAIN AND BOOTSTRAP FRACTION SIMULTANEOUSLY

Open symbols: $q_{\text{min}} \sim 1$
Filled symbols: $q_{\text{min}} > 1.5$

β_p (∞Bootstrap Current Fraction)

$\beta_{\tau E}$ (∞Fusion Gain)

$q = 3$ AT Reference shot
$q = 5.5$ AT Discharges

ITER reference shot
Near-term target simulation

ADVANCED TOKAMAK DISCHARGES SEEK TO MAXIMIZE FUSION GAIN AND BOOTSTRAP FRACTION SIMULTANEOUSLY
HIGH NORMALIZED PERFORMANCE (~10)
SUSTAINED FOR 5 τ_E

- $\beta_N \leq 4.7\%$
- $\beta_N H_{89}$
- q_{min}, $q(0)$, $f_{bs} \sim 0.5$
- $n = 1$ Mirnov Amplt. (G)
- $n = 1$ Saddle Loop (G) $\times 10$
- I_p (MA) $\times 10$
- P_{NB} (MW)
- $<n_e>$

NATIONAL FUSION FACILITY
SAN DIEGO

DIID-D

231-00 /rs
Limiting modes have the characteristics of resistive wall modes:

- Onset is at or above the no-wall ideal limit ($\beta_N \geq 4\ell_i$)
- Growth rate consistent with characteristic wall time
- Real frequency (<100 Hz) consistent with wall time, not fluid rotation
CONFINEMENT REMAINS GOOD AT HIGHER q

- Neoclassical theory and empirical measurements predict q^2 scaling
- One-fluid diffusivity is nearly the same in low q and high q discharges

Drift-wave model simulation gives good agreement with measured profiles
- Model contains ITG, TEM, and ETG with effects of $E \times B$ shear

Graphs showing heat diffusivity and temperature profiles with lines indicating simulation results.
NON-INDUCTIVE CURRENT NEEDS TO BE SUPPLIED AT THE HALF RADIUS FOR STEADY STATE

- E_{\parallel} measured; with assumption of neoclassical conductivity, gives J_{OH}
- Edge current drive consistent with bootstrap current calculations
- Central current drive consistent with bootstrap and neutral beam current drive calculations
- ECCD at the half radius will be required for steady-state

![Graph showing current density distribution](image)
FULLY NON-INDUCTIVE OPERATION REQUIRES DENSITY CONTROL AND OFF-AXIS CURRENT DRIVE

- Current evolves to unstable profile at constant pressure

- Density rises steadily at constant pressure without pumping
SHAPE STRONGLY AFFECTS STABILITY LIMIT

Data windowed to $0.75 < \ell_i < 0.85$, $\beta_N > 4\ell_i$

$S \equiv (l/aB) q_{95}$

Optimized Shape

Pumping Shape

S = 5.2

S = 6.7

β

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

β_N
DENSITY AND β FEEDBACK CONTROL DEMONSTRATED IN ELMING H–MODE

- β control by real-time control of NB power
- $\beta > 90\%$ of 2/1 tearing mode limit
- $\beta_{NH89} \sim 7$ for $34\tau_E, 3.4\tau_R$
- Density regulation by pumping and gas puffing
- $q_{min} > 1$
To extend the duration of present high performance discharges and reach fully non-inductive operation requires:

- Understanding stability dependence on shape and q
 Turnbull TH3/6
- Density control
- Current profile of sustainment by off-axis ECCD
 Prater EX8/1

To reach higher levels of performance requires:

- Active control of resistive wall modes
 Garofalo EXP3/01