

Effect of Variation in Equilibrium Shape on ELMing H-mode Performance in DIII-D Diverted Plasmas

M. E. Fenstermacher

T.H. Osborne, T.W. Petrie, C.J. Lasnier, A.W. Leonard, J. Watkins and the DIII-D Team

presented at the 18th IAEA Fusion Energy Conference

> Sorrento, Italy October 4 - 10, 2000

Motivation: Many desirable characteristics of tokamak operation may be enhanced by plasma shaping.

- Engineering simplicity
 - Single divertor
 - Vertical access
 - Vertically stable
- Disadvantages
 - Modest confinement
 - Low beta limit
 - High Peak Heat Flux

- Shape Optimization
 - Good confinement
 - Good beta limit
 - Reduced Peak
 Heat Flux
 - High I_p at fixed q_{95}
 - Specialized divertors

- High confinement
- High normalized beta

Very High

Balanced Double Null

Triangularity

- Reduced Peak Heat Flux
- Disadvantages
 - Large ELMs
 - Reduced core volume
 - Shape control

Outline: ELMing H-mode plasmas, shape changes between and density ramps within discharges.

SAN DIEG

Increased triangularity increases pedestal pressure and core confinement. δ Study, n_e/n_{Gr} \leq 0.7

- Edge electron pedestal pressure p_e^{ped} and confinement increase with triangularity δ .
 - ELM energy loss also increases
- Gradient of p_e^{ped} higher than ideal ballooning critical gradient and increases with δ .
 - Width of p_e^{ped} remains nearly constant with δ .
- At low density ELM energy loss is fixed fraction of pedestal energy independent of δ .

Reduced p_e^{ped} and stiff temperature profiles can produce confinement reduction independent of δ at high n_e . δ Study, $n_e/n_{Gr} > 0.7$

Summary: Magnetic balance optimization of unbalanced DN operation is predictable. dRsep Study

RESULTS - Divertor Sharing vs. dRsep (LSN - DN - USN)

- Moderate density $n_e/n_{Gr} \le 0.7 Attached$:
 - Target heat flux sharing determined by conduction
 - ELM energy sharing determined by broad SOL profile
 - Particle flux sharing affected by divertor neutral recycling.
- High density, n_e/n_{Gr} > 0.7 <u>Detached</u>:
 - Detachment physics determines heat flux sharing
 - n_{eH-L} higher for magnetic balance toward ion VB drift divertor.

Variation in heat flux sharing is large near DN for ne/nGr \leq 0.7; lesssensitive for high density.dRsep Study, ne/nGr \leq 0.7 and > 0.7

- Switches divertors within dRsep \pm 0.4 cm
- Balance at dRsep = +0.3 cm
- <u>Consistent with SOL energy</u> conduction and ExB drifts.
- At higher density:
 - Less sensitive to dRsep variation
 - Broader than implied by SOL conduction
 - Divertor detachment important
 - Upstream radiation
 - Convection

ELM energy profile broad in SOL; divertor sharing weakly dependent on dRsep $dRsep Study, n_e/n_{Gr} \le 0.7$

- ELM energy sharing less sensitive than time averaged peak q_{div}.
- Assuming conduction dominates:
 - ELM energy radial profile in SOL up to 4x broader than time averaged q_{div} profile
 - ELM energy will strike conformal divertor structures.

Summary: Reducing secondary divertor volume lowers peak heat flux but also reduces density operating window.

<u>**RESULTS</u>** - Divertor and Edge as Z_x^s reduced</u>

- Moderate density $n_e/n_{Gr} \le 0.7$:
 - Secondary divertor peak heat flux
 - Reduced initially due to flux expansion
 - Increased when high recycling lost in secondary.
 - Core fuelling rate increases.
- High density, n_e/n_{Gr} > 0.7:
 - Density limit at H-L back transition decreases.
- Increase in neutral penetration to LCFS as Z_x^s reduced explains observations.

- Peak secondary q_{div} normalized to $Z_x^s = 16$ cm case.
- Reduction of Z_x^s:
 - q_{div} reduced initially due to flux expansion
 - Engineering advantage
 - q_{div} increased at low Z_x^s
 when high recycling divertor
 lost
- Neutral penetration physics limits Z_x^s reduction.

M E Fenstermacher IAEA00 EX2-4 9/29/00 11

Fuelling increase at L-H transition and lower n_e^{H-L} as Z_x^s reducedmay shrink density operating window. Z_x^s Study, $n_e/n_{gr} \le 0.7$

- Density rise at L H normalized to n_e^{ped} and midplane gas pressure
- As Z_x^s reduced:
 - Fueling increased 2X
 - Independent of primary pumping
 - Density limit at H-L transition reduced
- Increased neutral penetration to core explains results.

M E Fenstermacher IAEA00 EX2-4 9/29/00 12

Conclusion: Quantitative understanding from these systematic studies can guide optimization of ELMing H-mode tokamaks.

- Triangularity Variations δ
 - Increased δ improves confinement of core but ELM size increases.
 - At $n_e/n_{GR} > 0.7$ dependence on δ is weaker; ELMs can be smaller.
- Up/Down Magnetic Balance dRsep
 - Peak heat flux sharing very sensitive to dRsep near DN for $n_e/n_{GR} \le 0.7$
 - Less sensitivity for $n_e/n_{GR} > 0.7$.
 - ELM energy flux profile in the SOL broader than time averaged q_{div}.
 - Density limit reduced if dRsep shifted away from divertor in ion ∇B drift direction.
- Secondary Divertor Volume Minimization Z_x^s
 - Secondary peak heat flux is predictable.
 - Density operating window reduced as Z_x^s reduced.
 - Neutral penetration physics explains observations.
- High triangularity unbalanced DN shapes have confinement and reduced target heat flux advantages for ELMing H-mode operation. Shape optimization necessarily involves compromises.

Related DIII-D papers at this conference

- High density with good confinement
 - M.A. Mahdavi, paper EXP1/04, Thursday afternoon
- H-mode Pedestal Physics
 - R. J. Groebner, paper EXP5/21, Tuesday morning
- Dependence of Edge Stability on Plasma Shape
 - L. L. Lao et al, paper EXP3/06, Monday morning

