
HIGHLY LOCALIZED ELECTRON CYCLOTRON
HEATING AND CURRENT DRIVE IN DIII–D

M. Austin,2 S. Bernabei,3 K.H. Burrell,1  R.W. Callis, 1 W.P. Cary,1

J.S. deGrassie,1 C. Fuchs,4 C.M. Greenfield,1 Y. Gorelov,3 R.W. Harvey,5 J.C. Hosea,3 

A. Isayama,6 J. Jayakumar,7 R.J. La Haye,1 L.L. Lao,1 R.A. Legg,1 Y.-R. Lin-Liu,1 J. Lohr,1 T.C. Luce,1 

M. Makowksi,7 C.C. Petty,1 R.I. Pinsker,1 D. Ponce,1 S. Pronko,1 

S. Raftopoulos,3 E.J. Strait,1 and K.-L. Wong3

by
R. Prater1

and

226-00/rs
S A N  D I E G O

DIII–D
NATIONAL FUSION FACILITY

*Work supported by U.S. Department of Energy under Contracts DE-AC03-99ER54463 and DE-AC05-96OR22462.

R  E  S  E  A  R  C  H     C  E  N  T  E  R
U N I V E R S I T Y  O F  T E X A S

1General Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA
email: prater@fusion.gat.com
2University of Texas, Austin, Texas 78712, USA
3Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 USA
4Max Planck Institute für Plasmaphysik, Garching, Federal Republic of Germany
5CompX, Del Mar, California, USA
6Japan Atomic Energy Research Institute, Japan
7Lawrence Livermore National Laboratory, Livermore, California 94550, USA



MOTIVATION FOR STUDIES OF ECCD

� ECCD (electron cyclotron current drive) needed for
— Current sustainment and profile control in tokamaks — but high

performance discharges have ELMs, tearing modes. . .

— Stabilization of MHD activity in discharges which have MHD

� Need to validate the theory so codes can be predictive under realistic
conditions and to take advantage of the unique localization properties
of ECCD
— MHD suppression
— Transport barrier generation
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ECH SYSTEM

� System with six 1 MW-class gyrotrons under construction
� Launchers for two gyrotrons have control of poloidal 

and toroidal angles (PPPL)

� Independent scans of
n|| and ρ (magnetic well
depth) are possible

� Independent control over toroidal and poloidal launch angles facilitates science
(independent n|| and ρ scans) and applications (high n|| gives high ICD, while low
n|| gives high jCD)
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OUTLINE OF RESULTS

� Analysis of ECCD experiments shows that driven current is highly localized,
in agreement with theory
— Behavior of jECCD with magnetic trapping consistent with theory
— Successful experimental measurement of off-axis ECCD in ELMing H–mode

� Highly localized nature of ECCD is validated in experiments showing full
stabilization of neoclassical tearing modes, under conditions where direct
measurement of ECCD is not possible

� Localized nature of ECH may be involved in the observed generation of a strong
electron transport barrier in discharges with reversed magnetic shear
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ECCD CAN BE MEASURED DIRECTLY FROM MSE SIGNALS

� MSE (motional Stark effect) diagnostic measures
magnetic field pitch angles at different major radii,
so Bz = Bt tan–1 (pitch angle)

� From Ampere’s law

� The measured ∂Bz/∂R are compared to simulations to include the effects of
small changes in bootstrap, NBCD, and Ohmic currents

� Total driven current is determined from a best statistical fit to the data, varying the
location, width, and magnitude of the driven current in the simulation

so the local change in jφ due to ECCD is proportional to 
the change in ∆Bz/∆R, where ∆Bz is the difference in Bz 
between adjacent MSE channels and ∆R is the spatial separation
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MSE MEASUREMENTS SHOW THAT THE INCREASE IN 
CURRENT DENSITY FROM ECCD IS AS LOCALIZED AS 

RAY TRACING CALCULATIONS PREDICT
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ELECTRON CYCLOTRON CURRENT DRIVE PROVIDES
LOCALIZED CURRENT WITH GOOD CONTROL

� Observed
changes in
MSE signals
consistent with
ray tracing
calculations
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ECCD EFFICIENCY DECREASES WITH RADIUS
(FOR POLOIDAL ANGLE ≈ 90 deg) AS EXPECTED

FROM THEORY DUE TO TRAPPING EFFECTS

� Excellent agreement with theory except at largest radius
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POLOIDAL SCANS SHOW SYSTEMATIC INCREASE
IN ECCD EFFICIENCY TO HIGH FIELD SIDE,

IN GOOD AGREEMENT WITH THEORY

� Theoretically the increase in ECCD efficiency with poloidal angle
(i.e., magnetic well depth), is due to (a) reduced trapping effects and 
(b) wave absorption on higher energy electrons from nll upshift
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LOCALIZED CHANGE IN CURRENT PROFILE DURING
ECCD IS CLEARLY OBSERVED IN ELMING H–MODE PLASMAS
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CO-ECCD RADIALLY LOCALIZED AT ISLAND CAN REPLACE THE
“MISSING” BOOTSTRAP CURRENT AND COMPLETELY STABILIZE

THE NEOCLASSICAL TEARING MODE

τR
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HIGH CURRENT DENSITY OBTAINED THROUGH 
OPTIMIZATION OF ECCD

� Target plasma is ELMing
H–mode discharge with
sawteeth and 3/2 tearing mode

� ECCD applied to high field side
midplane to minimize trapping
effects

� BT adjusted to place resonance
near q = 3/2 surface

� Small toroidal component to
ECH rays maximizes jec
rather than Iec
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FULL STABILIZATION OF NTM OBTAINED WITH MODEST ECH POWER

Resonance moved 2 cm outward
No ECCD
Full Stabilization

� After reaching the seed size,
the stabilization is rapid because
the mode growth rate is negative

� βN increases during stabilized
phase

� Even in presence of large
sawteeth the mode doesn’t
grow
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THE LOCATION OF ECCD IS CRITICAL TO FULL STABILIZATION

� Toroidal field was ramped down
to scan ECCD past the island

� Alignment within 2 cm is required

� jECCD > jBS is satisfied

� Sensitivity of effect to location
implies that the width of the ECCD
is less than the island size, in
agreement with ray tracing calculation

� These results show that modeling is
accurate even in ELMing H–mode with
sawteeth and a tearing mode, at large ρ

� Results similar to those obtained on ASDEX-U and JT-60U
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ECH IN DISCHARGES WITH NEGATIVE MAGNETIC SHEAR
LEADS TO FORMATION OF AN ELECTRON TRANSPORT BARRIER

� Electron transport barrier forms immediately
upon application of ECH power of 0.5 MW

� Barrier location lies just outside heating location

� χe more than an order of magnitude smaller
than χi in the barrier

� Stabilization of ETG mode by Shafranov
shift believed responsible for decrease in χe

� Barrier found with co-ECCD, counter-ECCD,
and radial ECH; also with no NBI
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ECH EARLY IN DISCHARGE PRODUCES
HIGH Te AND LARGE PRESSURE GRADIENT

WITHOUT NEUTRAL INJECTION
� 0.8 MW ECH applied at ρ ~0.4; no NBI

� Co–ECCD in this case; radial ECH also works

� Measurement of Te ~15 keV by ECE roughly supported by
Thomson scattering and pulse height analysis
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CONCLUSIONS

� Modeling and experiment have substantially come together for ECH/ECCD
— Best tested in quiescent L–mode
— Also tested under realistic conditions of ELMs, sawteeth, and other turbulence

� The narrow current drive profile of ECCD is useful for stabilizing neoclassical
tearing modes
— Full suppression obtained, with increase in pressure and neutron rate
— Effect very sensitive to location of current drive
— Success indicates indirectly that the narrowness of the ECCD profile and its

magnitude are close to those calculated by ray tracing

� Localized ECH generates an electron transport barrier in the vicinity of the power
deposition

� These results strongly support ECCD for detailed control of the current profile
needed to realize advanced tokamak discharges
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