Progress in Quantifying the Edge Physics of the H-mode Regime in DIII-D

R.J. Groebner, D.R. Baker, K.H. Burrell, T.N. Carlstrom, J.R. Ferron, P. Gohil, L.L. Lao, D.M. Thomas, T.H. Osborne, W.P. West, J.A. Boedo¹, R.A. Moyer¹, G.R. McKee², R.D. Deranian³, E.J. Doyle⁴, C.L. Rettig⁴, T.L. Rhodes⁴, J.C. Rost⁵

General Atomics, San Diego, California, USA ¹University of California, San Diego, California, USA ²University of Wisconsin, Madison, Wisconsin, USA ³Cardiff University, Wales, United Kingdom ⁴University of California, Los Angeles, California, USA ⁵Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

18th IAEA Fusion Energy Conference

October 4 - 10, 2000 Sorrento, Italy

Boundary Physics is Key to Performance of a Next Step Tokamak

- H-mode is baseline operating scenario for future machines
- H-mode access set by physics near separatrix
- Global confinement correlated with height of pressure pedestal
- Density and impurity control provided by edge transport, normally ELMs
 - **o** However, heat pulses from ELMs are undesirable

H-mode Boundary Physics is Being Quantified in DIII-D

- Transition criterion not simply a critical value of T_e
- Gradients of temperature and pressure increase in L-mode and may play a causal role
- Evidence for threshold in terms of temperature or pressure gradients
- Edge pressure gradient limited by MHD stability
- Width of pressure barrier scales with $(\beta_{pol})^{1/2}$

Steady-state, Non-ELMing H-mode Discharge Discovered -- Quiescent H-mode

- Steady state density
- Low impurity content and radiated fraction
- Standard H-mode confinement
- No pulsed heat load to divertor plates
- Edge particle confinement may be controlled by continuous coherent mode

Edge Parameters Measured Very Near Separatrix

- Edge profiles of T_e, n_e, p_e, T_i measured with spatial resolution of less than 1 cm
- Data fit with modified tanh function
 - Continuous first derivatives everywhere
 - Suitable for database and time evolution analysis
- Edge parameters normally evaluated where density gradient is steepest the "symmetry point"
- This location is typically less than 1 cm inboard of separatrix

DEFINITION of MODIFIED TANHFIT

H-mode Transition NOT Controlled by Electron Temperature Alone

- Operational space diagrams of T_e n_e do not show clear distinction between L-mode and H-mode points
- ◆ Studies of Ion ∇B drift show that for same values of T_e, plasma can be close to or far from threshold
 - Depending on sign of B_t
- Pellet reduces edge temperature yet, it causes an L-H transition

7

QTYUI OP

T_e Does Not Show Boundary Between L-mode and H-mode States

- Operational space diagram from density scan
- Plasma current and toroidal field fixed
- SND discharges with ion ∇B drift in favorable direction

"Critical" T_e Not Observed for Ion ∇B Drift

RJG IAEA 2000

- ◆ Blue data are from Ion
 ∇B drift towards x-point.
 Data are just prior to transition.
- ♦ Red data are from Ion
 ∇B drift away from x point. Plasma is far from
 transition.
- T_e similar for both cases. Thus, T_e is not the control.
- From T.N. Carlstrom, 2000 EPS

ΟΤΥυι

Pellet Reduces Edge Temperature But Still Causes an L-H Transition

QTYUI OP

Gradients of temperature and pressure increase in L-mode and may play a causal role

- ◆ Edge ∇T_e, ∇P_e, ∇T_i, ∇P_i routinely increase during Lmode prior to L-H transition
 - Changes are usually larger than changes in underlying parameters
- For a wide class of discharges, transition occurs when ∇T_e and ∇P_e approach a well-defined boundary
- If ohmic discharge is close to H-mode boundary, gradients evolve by small amount in L-phase
- If ohmic discharge is far from H-mode boundary, gradients evolve by large amount in L-phase

Gradients Classify L- and H-mode States Well

- Evaluated at point of largest density gradient
- Includes scans of n_e, I_p, B_t
- Also includes pellet-injected Hmodes
- These data are a superset of data shown in T_e-n_e diagram

Gradients Increase During L-mode

- Average of 3 discharges with low power threshold
 - Ohmic discharge is close to H-mode threshold
- Increase in gradients is moderate during L-mode
- Increase in T_e is small during L-mode
- Percentages are relative changes of a parameter during L-mode phase

Gradients Increase Markedly In L-mode with High Power Threshold

QTYUI OP

Global Confinement Correlated with Pressure Pedestal

- New observations exhibit this correlation
- Confinement degradation in gas-fuelled, high n_e discharges correlated with drop in T_{ped} and P_{ped}
- High density, gas-fuelled discharges which do not degrade in confinement, also show no degradation in P_{ped}
- Increase of confinement with triangularity δ is correlated with increase in P_{ped}

H-Mode Energy Confinement Correlated with Height of Pressure Pedestal

- Discharges with large H-mode pedestals have high energy confinement enhancement, H.
 - **Type 1** ELM discharges have large pedestals due to high edge pressure gradient.
 - Low n_e Type 3 ELM discharges have limited gradient α and therefore poor H.
 - Low T_e Type 3 ELM discharges may reach higher H if α increases at high n_e

ΩΤΥUΙ ΟΡ

From T.H. Osborne, 1997 H-mode Workshop

Edge Pressure Gradient Consistent with MHD Limits

- Under some conditions, pressure gradient is consistent with infinite-n ballooning modes, 1st regime limit
- However, edge bootstrap current often provides stability against these modes
 - Resulting pressure gradients in 2nd stable regime
- Then, observed pressure gradients are consistent with limits due to ideal medium-n kink/ballooning modes

Increase of confinement with triangularity δ is correlated with increase in P_{ped}

- Due primarily to increase in ∇P with δ
 MHD stability improves with δ
- Observed pressure gradient consistent with medium-n ideal kink/ballooning modes
- \blacklozenge Width of pressure barrier Δ_{pe} increases very weakly with δ
- Δ_{pe} has approximately value expected from established scaling relationship based on $(\beta_{pol})^{1/2}$

Width of Pressure Barrier Varies Weakly with Triangularity

(T.H. Osborne, 1999 H-mode Workshop)

Threshold for n=5 MHD Modes Increases with Triangularity as Does Measured Edge ∇P

(J.R. Ferron, 1999 APS)

- Modes are ideal kink/ballooning
- Calculations from GATO
- Calculations for symmetric up-down shape
- Thus, there may be slight change in quantitative results for actual non-symmetric shapes
 QTYUIOP

New Steady State H-mode Regime Discovered - Called Quiescent H-Mode

- Steady-state density and impurity levels
- Low radiated power
- ELM-free operation (no pulsed heat to divertor)
- Standard H-mode confinement quality
- Normal H-mode edge pressure gradient
- Discharge duration limited only by power supplies
- These discharges obtained with counter-injection, cryopumping and sufficient outer gap

QH Mode Provides Steady State Operation For Duration of Discharge

QH Mode Has Normal H-mode Pressure Gradient

- Electron profiles are very similar in ELMing and QH phases of same discharge
- ♦ ∇P_e is same in ELMing and QH phases
- Pedestal T_i is higher in QH phase

23

Very Deep E_r Well May Facilitate QH Mode

- Reversed plasma current modifies radial electric field
- V_Φ x B_θ term in radial force balance changes sign
- H-mode E_r well is deeper than for normal direction of plasma current
- Also, E_r is negative, rather than positive, in core

QTYUI OP

Multi-Harmonic MHD Mode (MHM) May Be the Key to Controlled Edge Transport

- A continuous, coherent mode is observed on all fluctuation diagnostics during QH phase
- Mode has several harmonics with n typically in range 1-9
- Mode exists very near the separatrix
- This mode provides sufficient transport to exhaust particles
 - Thus, giving particle control

ONSET OF MULTI-HARMONIC EDGE MODE INCREASES DIVERTOR D_{α} AND REDUCES n_e

QTYUI OP

Reflectometer Shows Multiple Harmonics of Coherent Mode

Summary and Conclusions

- Transition criterion not simply a critical value of T_e
- Gradients of temperature and pressure increase in L-mode and may play a causal role
- Edge pressure gradient limited by MHD stability
- Width of pressure barrier scales with $(\beta_{pol})^{1/2}$
- Quiescent H-mode provides steady-state particle control
 - **o** Results in high quality H-mode discharge
- QH operation has very desirable reactor features

