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INTRODUCTION

� Understanding Particle Transport is essential to the successful 
design of a Tokamak fusion reactor

� It is likely that a fusion reactor will be designed to operate with regions 
of enhanced confinement. (“Enhanced confinement” means transport 
levels significantly lower than the usual L–mode or conventional 
ELMing H–mode transport)

� Here we address issues related to particle transport in Tokamak plasmas 
with regions of enhanced confinement

� Two main issues are:
— Control of density profile shapes

 — Understanding of impurity accumulation and transport
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 THE PARTICLE FLUX EQUATION HAS LARGE 
CONDUCTIVE AND CONVECTIVE TERM

� Gas Puff and Pellet Injection Experiments show that,

� Where the convective flux, Vnj, is usually inward and non negligible

� V can have Neoclassical and Anomalous Components
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THE CONVECTIVE VELOCITY HAS TURBULENT
AND NEOCLASSICAL COMPONENTS
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 THE ELECTRON PARTICLE FLUX EQUATION

� For the purposes of this discussion, we can write the electron particle flux equation as,

� For electron particle flux in anomalously transporting plasmas, we use,

� H is a geometric term proportional to dV/dΦ, where V is the plasma volume and 
Φ is the toroidal magnetic flux. ξ is an approximate constant which depends on 
the type of turbulent transport. This expression is based on the q dependence of 
DIII–D standard L–mode and H–mode density profiles,  and is consistent with 
predictions of Isichenko et. al and Baker and Rosenbluth
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 PLASMAS WITH HIGH TURBULENT TRANSPORT ne ∝ (qH)

� In plasmas with high turbulent transport the ware pinch can be neglected

� Where Γ  � 0,
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IN HIGH TRANSPORT L–MODE PLASMAS ne ∝ (qH)–0.8
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IN H–MODE PLASMAS WITH NO INTERNAL 
TRANSPORT BARRIER, ne ∝ (qH)–0.3 
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IMPURITY TRANSPORT

� The neoclassical part of the impurity particle flux can be written

 

� In steady state, with Γ → 0, we obtain,

� In the Banana Regime
gD→z ≈ Z and –1.0 < gTi 

< 0.0

� Plasmas with steep density profiles and moderate ion temperature profiles
will show central impurity accumulation

� Plasmas with flat density profiles and steep ion temperature profiles
will show edge accumulation of impurities
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TRANSPORT DATA IS CONSISTENT WITH A SIMPLE LINEAR
COMBINATION OF BOTH TURBULENCE-DRIVEN AND 

COLLISION-DRIVEN (i.e., NEOCLASSICAL) TRANSPORT

Ansatz:

In most cases of interest,   Dz      >>    Dz     

� Hence, steady-state impurity profile shape can be much different from that 
expected from either turbulence-dominated or collision-dominated theories
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COMBINING TURBULENT AND NEOCLASSICAL

� Result is less impurity accumulation than is 
predicted by neoclassical transport alone
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DISCHARGES WITH ITB AND PEAKED DENSITY PROFILES
SHOW CENTRAL IMPURITY ACCUMULATION

� Experimentally measured impurity accumulation is weaker 
than neoclassical and agrees with combined result
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VH–MODE DISCHARGES SHOW EDGE 
ACCUMULATION OF IMPURITIES

� In VH–mode plasmas with flat density profiles and peaked ion temperature
profiles, the medium weight impurities accumulate near the edge
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EXPRESSIONS FOR THE PARTICLE DIFFUSION COEFFICIENT

� The electron particle flux in the core of the plasma can be calculated
from the sources. Then the diffusion coefficient can be calculated

� If the Ware pinch term is neglected we obtain,
 

� Inclusion of the Ware pinch  yields,
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� In regions of anomalous transport, De is not well defined since the denominator
is the difference of two large terms 

� In regions of enhanced confinmemnt, the two terms in the denominator 
no longer cancel and De is well defined



REGION OF ENHANCED CONFINEMENT FOR ρ < 0.5 PARTICLE 
DIFFUSIVITIES WITH AND WITHOUT CORRECTION FOR WARE PINCH

Without Correction
for Ware Pinch

With Correction
for Ware Pinch
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RELATION BETWEEN PARTICLE AND ENERGY TRANSPORT

� The particle flux and the energy heat can have widely different
dependence on plasma parameters
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DIMENSIONLESS SCALING OF PARTICLE DIFFUSIVITY

� Direct Measurement of D (and V) show that D ~ χ eff or χi
— The difference in the behavior between heat flux and particle 

flux is due to the convective part of the flux

� Dimensionless scaling experiments show that for L–mode plasmas DHe scales
as Bohm like For H–mode plasmas DHe scales like gyro-Bohm which is like χ i, χ eff or χ e
De scales between Bohm and Goldston. Both DHe and De scale close to χ i
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DIMENSIONLESS SCALING AT PARTICLE DIFFUSIVITY
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GAS PUFF MEASUREMENTS SHOW THAT DHe HAS SIMILAR
MAGNITUDE AND RADIAL DEPENDENCE AS χeff
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GAS PUFF MEASUREMENTS SHOW THAT De HAS SIMILAR
MAGNITUDE AND RADIAL DEPENDENCE AS χeff

225-00/rs
S A N  D I E G O

DIII–D
NATIONAL FUSION FACILITY

1.00.80.6

Normalized ρ

D 
- m

2 /
s

L–mode H–mode

0.2

χeff
χe
χi

0.1

1.0

10.0

Dmod

100.0

1.00.80.6
Normalized ρ

D 
- m

2 /
s

0.40.2
0.01

0.10

1.00

10.00

De

χeff



STRONG Te/Ti DEPENDENCE IS OBSERVED FOR BOTH 
ENERGY AND HELIUM TRANSPORT IN H–MODE PLASMAS
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COMPARISON BETWEEN De AND χ i FOR
ENHANCED CONFINEMENT DISCHARGES
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� In DIII–D NCS plasmas with ITBs,  De is more closely related to χ i than χe
For many DIII–D plasmas with ITBs, χ i ⇒ χneoclassical, while χ e remains high.
In these plasmas, De ⇒ Dneoclassical
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SUMMARY
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� Turbulent Transport (L–mode, conventional ELMing H–mode)
— ne ~ (qH)–ξ
— DHe and De ~ χeff
— No central accumulation of light or medium weight impurities
— In L–mode, De and DHe scale in a Bohm manner
— In H–mode, DHe scales in a gyro-Bohm manner
— DHe increases strongly with increasing Te/Ti in H–mode

� Enhanced Confinement (ITBs or VH–mode)
— De greatly reduced in regions where χ i ~ neoclassical
— No apparent accumulation of He with respect to deuterium
— Central accumulation of C and Ne in NCS plasmas with ITBs

� Major exception: Recent DIII–D counter injection NCS/ITB discharges with an ELM 
free edge show no apparent central impurity accumulation (QH–mode)

— Promote Edge accumulation of C and Ne in VH–mode with flat density profile


