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ABSTRACT 

A 5 ps gated framing camera was demonstrated using the pulse-dilation of a drifting 
electron signal. The pulse-dilation is achieved by accelerating a photoelectron derived 
information pulse with a time varying potential [R.D. Prosser, J. Phys. E 9, 57 (1976)]. The 
temporal dependence of the accelerating potential causes a birth time dependent axial 
velocity dispersion that spreads the pulse as it transits a drift region. The expanded pulse is 
then imaged with a conventional gated micro-channel plate based framing camera and the 
effective gating time of the combined instrument is reduced over that of the framing camera 
alone. In the drift region, electron image defocusing in the transverse or image plane is 
prevented with a large axial magnetic field. Details of the unique issues associated with rf 
excited photocathodes were investigated numerically and a prototype instrument based on 
this principle was recently constructed. Temporal resolution of the instrument was measured 
with a frequency tripled femtosecond laser operating at 266 nm. The system demonstrated 
20X temporal magnification and the results are presented here. X-ray image formation 
strategies and photometric calculations for ICF implosion experiments are also examined.  



T.J. Hilsabeck et al. Pulse-Dilation Enhanced Gated Optical Imager with 5 ps Resolution 

  General Atomics Report GA–A26730 1 

I.  INTRODUCTION 

Framing cameras are used to assess the symmetry of imploding targets in laser driven 
inertial confinement fusion experiments. Fast gate times are needed to avoid motional 
blurring due to the high velocities and small spatial dimensions of the imploding targets. 
High speed image gating is accomplished by energizing a photomultiplier array of 
microchannel pores with a high voltage, short duration electrical pulse.1 Photons incident on 
the front surface of the array generate electrons which are accelerated through the 
microchannel pores by the high electric field. As a result of collision with the pore walls, 
secondary electrons are liberated in this process and the device produces gain. The lower 
limit on the gate time achievable with such a device is related to the transit time of electrons 
through the microchannel plate pores. Using thin substrates, FWHM temporal gate times as 
low as 30 ps have been achieved.2 However, further reductions in gate times via this 
approach are impractical due to the loss of gain and increased fragility of the detector. 

An alternate approach to obtaining shorter gate widths is arrived at by decoupling the 
photoelectron production and the gain producing photomultiplier array. The electron signal 
may then be manipulated with electromagnetic fields in a vacuum drift region prior to its 
arrival at the microchannel plate. In particular, the electron pulse generated at the 
photocathode may be accelerated by a time varying electric field in such a manner that the 
initial electrons transit the drift region at a higher velocity than those coming later. Thus, the 
temporal shape of the information signal arriving at the photomultiplier array will be dilated 
or temporally magnified with respect to the photon signal incident on the cathode as depicted 
in Fig. 1. Pulse-dilation was used to reduce the necessary bandwidth of an oscilloscope used 
to observe fast transient electrical signals3 and axial magnetic fields have been used to store 
images created from photoelectron emission in several applications.4,5 Here, we combine 
these techniques in order to achieve extremely fast electrical gating of two dimensional 
images. 

 
FIG. 1. Principle of pulse-dilation: photoelectrons are accelerated with a time 
varying electric field and the resulting energy dispersion causes the signal to 
stretch axially as it traverses the drift region resulting in reduced effective 
temporal resolution when sampled with a gated microchannel plate. 
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II.  DESIGN CONSIDERATIONS AND ANALYSIS 

The temporal magnification of an incident signal depends upon the temporal profile of 
the photocathode excitation pulse and the length of the drift region. Consider two 
photoelectrons which enter the drift region at times 

€ 

t 0  and 

€ 

t1. In the limit of small 
accelerating gap and ignoring any birth energy spread, the kinetic energy of the electrons will 
be given by the cathode-anode potential difference and they will exit the drift region at time 

€ 

′ t i = L m
2eφ (t i )

+ t i    . (1) 

Here, 

€ 

m  is the electron mass, 

€ 

e> 0 is the magnitude of the electron charge, 

€ 

L  is the 
length of the drift region, 

€ 

φ (t )  is the cathode-anode difference potential and 

€ 

i = 0,1 indexes 
the particles. We may associate a temporal magnification factor 

€ 

m t1, t 0( ) =
′ t 1 − ′ t 0

t1 − t 0
≈ 1+

L
2vd

|φ
•

|
φ

   , (2) 

with respect to the difference in arrival times of the two electrons where 

€ 

vd  is the average 
velocity for electrons in the signal pulse transiting the drift region. Figure 2 shows the 
resultant temporal magnification for the specific case where the cathode-anode potential 
difference decays linearly from –5 kV to ground in 500 ps, 

€ 

t1 − t 0  = 10 ps and 

€ 

L  = 50 cm. At 
100 ps, cathode-anode potential has fallen to –4 kV and the temporal magnification is 17. 
These conditions represent the design point for the instrument discussed below. 

 
FIG. 2. Temporal magnification of a 10 ps signal when 
accelerated by a –10 V/ps potential ramp and drifting over 
a 50 cm length. 

In reality, photoelectrons are born with a range of initial energies represented by a 
temperature, and the electric fields in the accelerating gap are finite. These conditions 
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introduce a limit to the minimum achievable temporal resolution of the device. An electron 
born slightly later with higher initial energy can catch up to an electron born earlier with 
lower energy. Thus, the temporal causality of the electron source process or input signal is 
spoiled. In order to estimate the magnitude of this effect, a one dimensional numerical 
simulation of the acceleration process for electrons born with differing initial energy spreads 
was performed. An ensemble of electrons are sourced at the photocathode with a range of 
initial velocities based on the temperature distribution and their motion through the 
accelerating gap and down the drift tube is followed. The acceleration gap was 1.6 mm, the 
drift region 50 cm and the drift energy approximately 4 keV. A comparison of two output 
signals is shown in Fig. 3. In each case the input signal was two Gaussian pulses of width 
1 ps with their peaks separated by 6 ps. The black curve represents the output signal for the 
case in which all electrons are born with no initial kinetic energy. For the gray curve, the 
electron birth energy is normally distributed with a temperature of 1 eV. Under these 
conditions, the width of the output signal is just starting to be impacted. 

 
FIG. 3. Comparison of pulse-dilated output signals 
showing the broadening effect caused by finite 
photoelectron birth energy spread. In each case, the 
input signal consisted of two 1 ps wide Gaussian 
pulses separated by 6 ps. 

Another possible limitation to the temporal resolution is space charge repulsion. At 
sufficiently high photocurrent density, electric fields produced by the electrons themselves 
can lead to modifications of the particle trajectories. In our device, the dominant effect will 
occur for motion in the drift direction due to the presence of a large axial magnetic field. 

Space charge repulsion will cause additional spreading of the electron signal beyond that 
expected due to pulse-dilation. The photocurrent density at which space charge effects will 
begin to affect the output signal was be obtained via particle-in-cell simulation. For this 
work, a 2D axisymmetric OOPIC (object oriented particle in cell) code was employed.4 A 
Gaussian photocurrent pulse of width 1 ps was emitted from a 1 cm2

 circular region of the 
cathode. The cathode potential was ramped to ground from –5 kV over a 500 ps period and 
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the photocurrent pulse emission peaked at – 4 kV. A large axial magnetic field was included 
in the simulation to avoid transverse pulse spreading. The PIC simulation was continued until 
all electrons left the accelerating gap and entered the field free region approximately 1 cm 
past the anode mesh. The particle positions and velocities were then output from the 
simulation and the signal arrival time at the end of a 50 cm drift region was calculated. 
Figure 4 shows the width of the output signal as a function of the peak photocurrent emission 
density. At low currents, the signal width is constant and very close to the value predicted in 
Fig. 2. At a peak emission photocurrent density of 1 mA/mm2, the output signal pulse width 
begins to increase. This level corresponds to approximately one electron emitted per 
picosecond per 160 µm2

 area. 

 
FIG. 4. PIC calculations of pulse broadening due to 
space charge repulsion of the photoelectrons. The 
input signal was a 1 ps wide Gaussian pulse with peak 
photocurrent density given on the abscissa. 

A large uniform axial magnetic field is provided to prevent the electrons from spreading 
out in the transverse direction causing image defocusing. Thus, the electrons execute 
cyclotron motion as they transit the drift space. The radial extent of this motion sets the 
minimum spatial resolution achievable in the device. Image blurring due to electron 
cyclotron motion occurs over a distance of 

€ 

4 rc = 9.5 T⊥1/2 /B  µm, where 

€ 

T⊥  is the transverse 
electron kinetic energy in eV and 

€ 

B  is the magnetic field strength in Tesla. The minimum 
transverse electron kinetic energy is given by the spread in photoelectron birth energy and is 
typically on the order of 1 eV. However, additional contributions can occur if there are 
appreciable transverse electric fields in the accelerating region. Therefore, it is necessary to 
ensure that the photocathode and anode mesh planes are normal to the focusing magnetic 
field direction and to avoid generating photoelectrons near the fringing fields near the edges 
of the photocathode conducting surfaces. There are two secular drifts associated with 
electron motion in non-uniform magnetic fields. The first arises due to gradients in the 
magnetic field strength and is approximately given by 

€ 

x∇B =  

€ 

Lv⊥2 /ω cv||δ  where 

€ 

ω c  is the 
angular frequency of the cyclotron motion, 

€ 

δ  is the scale length over which the magnetic 
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field changes, 

€ 

L  is the length of the drift region, 

€ 

v⊥  is the electron velocity perpendicular to 
the magnetic field direction and 

€ 

v||  is the velocity of the electron’s guiding center along the 
magnetic field direction. For the instrument discussed here, this drift is sub-micron in length. 
The second secular drift is due to the curvature of magnetic field lines and is proportional to 
the parallel energy of the electrons. The magnitude of the curvature drift may be 
approximated as 

€ 

xcurv = Lv||2 /ω c Rc  where 

€ 

Rc is the radius of curvature for the magnetic 
field line. Since the parallel velocity is large, the curvature drift can be significant in cases 
where the direction of the magnetic field lines changes appreciably. However, all of the 
particles will experience an approximately equal drift displacement and as a result image 
blurring is not incurred. There is a relative drift due to the parallel velocity dispersion 
necessary for pulse-dilation, but it is negligible in all but the most extreme cases. 

Several interesting phenomena associated with rf excited photocathodes affect the 
operation of the pulse-dilation imaging system. In the first case, the time varying nature of 
the accelerating field causes a temporal dispersion of the output signal across the image 
plane. This may be understood as a finite wavelength effect inherent in the rf excitation of 
the photocathode. This phenomenon is absent for static potentials used in conventional streak 
camera designs, although significant time dispersion across the cathode can originate from a 
change in the cathode to deflection plate transit time as one moves off axis and curved 
streaks may appear at high streak speeds. To calculate the magnitude of the finite wavelength 
effect, a full-wave electromagnetic simulation of the photocathode charging was performed. 
The results indicate that at a particular instant during the ramp at which time the acceleration 
potential is approximately 4150 V there is a potential variation of approximately 48 V across 
a 5 mm diameter circular region centered on the cathode. With a 10V/ps potential ramp, this 
variation corresponds to an effective temporal spread of approximately 5 ps. This example 
illustrates a system design constraint wherein the requirements for temporal resolution and 
image plane aperture size limit the rate at which the accelerating potential may be ramped 
and sets the maximum temporal magnification per unit drift length of the instrument. 

The second important observation concerning rf excitation of the photocathode involves 
the magnetic field component of the electromagnetic wave. For the high accelerating fields 
used in this device, the magnetic field component can be several tens of gauss. Since the 
direction of this rf magnetic field is transverse to the accelerating electric field, it effectively 
changes the magnetic field direction during the acceleration time which would result in a 
transverse energy component in the electron signal. In order to avoid this deleterious 
situation, the rf magnetic field component must be reduced. One method of achieving this is 
to counter propagate another wave in the opposite direction with the appropriate phase and 
polarization. It is possible to arrange the waves such that the electric field components add 
whereas the magnetic field components cancel. A simple method for achieving this 
cancellation is to form a transmission line open near the active region of the photocathode. 
The incident wave reflects back onto itself in the desired phase to cancel the magnetic field 
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while reinforcing the electric field. Another possibility is to excite the photocathode with 
colliding pulses from a dual feed arrangement. Figure 5 shows the rf magnetic field strength 
in the accelerating gap of the photocathode for three different excitation scenarios. In each 
case, a peak accelerating field of 3 kV/mm is reached in the accelerating gap. For the straight 
transmission line, the rf magnetic field strength exceeds 100 Gauss and would result in 
significant transverse energy excitation. Fortunately, the open reflection and colliding pulse 
arrangements substantially reduce the rf magnetic field to acceptable levels for good spatial 
resolution. Another strategy for eliminating rf magnetic field is to superimpose an rf 
excitation pulse with zero net current at the gating time onto a static DC voltage. This can be 
accomplished by capacitively coupling the rf transmission line to the photocathode strip. This 
configuration allows a single gate pulse to transit a large photocathode area and provide 
gating for multiple frames. 

 
FIG. 5. RF magnetic field component taken from an 
electromagnetic simulation of the excitation for three 
different photocathode designs. Input strip widths are 5 
mm and circular cathode diameters are 10 mm. In each 
case, the electric field strength peaked at 30 kV/cm in the 
cathode center. It is necessary to reduce the rf component 
of the magnetic field in order to avoid large transverse 
energy excitation and reduced spatial resolution in the 
electron images.   
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III.  INSTRUMENT DESIGN 

A prototype instrument has been constructed to demonstrate the principle of using pulse-
dilation to achieve very fast gating of a two dimensional image. The photocathode was 
constructed from a 2-in. diameter fused silica window coated with 100 nm of Au. A 1.6 mm 
accelerating gap was formed between the photocathode and an electroformed 500 lines per 
inch nickel mesh held at ground. The photocathode was excited from a 50 

€ 

Ω  microstrip 
transmission line printed on RT 5880 Duroid substrate. The excitation pulse was formed by a 
Kentech PBG1 based pulser and built up to –3 kV over 100 ps and then decayed roughly 
linearly to ground over 500 ps. Simulation results showed that the pulse reflection at the 
photocathode resulted in a peak voltage of –5 kV and that at the target drift energy of –4 
keV, the potential was changing at approximately –10 V/ps. The drift distance from the 
anode mesh to the microchannel plate detector was 50 cm. Calculations show that these 
conditions produce a temporal magnification of approximately 17X. A magnetic focusing 
field of 400 gauss was produced with four 40 cm diameter coils. Each coil has an axial length 
of 8 cm and they are spaced with a 15 cm gap between them. A photograph of the instrument 
is shown in Fig. 6. The vacuum chamber is a 4-in. diameter tube of 316 stainless and is 
evacuated with a 300 l/s turbo-molecular pump. The system achieved an operating pressure 
below 10–5 Torr. The pulse-dilated electron signal was gated with the Flexible X-ray Imager 
(FXI) microchannel plate detector on loan from LLNL. The measured gate width of the FXI 
instrument is approximately 80 ps.5  

 
FIG. 6. Front end view of the pulse-dilation 
instrument. Four 10 mm diameter photocathodes 
are visible in the center of the viewport. The 
vacuum tube is centered on the axis of the blue 
magnet coils. Photocathode pulser excitation 
enters through coaxial feedthroughs entering from 
the upper left. 
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IV.  EXPERIMENTAL DEMONSTRATION 

The temporal resolution of the pulse-dilation enhanced FXI instrument was characterized 
using 100 fs ultraviolet (uv) light pulses obtained by frequency tripling the output of a 
Quantronix Integra-C Ti-Sapphire laser system. During the experiments, the laser system 
provided approximately 1 mJ pulses at 800 nm. The fundamental frequency pulses were 
passed through the Quantronix STHG-400/266 harmonic generator module which output 
approximately 80 µJ at 266 nm. The laser system was operating at a repetition rate of 
500 Hz. The uv pulse was sent through an 80 ns optical delay line formed using 12 dielectric 
mirrors arranged on the optical table. The optical delay is necessary to allowing adequate 
time for the triggering of the photocathode and FXI pulsers. The uv light pulse was then 
passed through a Mach-Zehnder interferometer which output a pair of pulses. A mirror in one 
leg of the interferometer was mounted on an adjustable stage so that the relative temporal 
spacing of the pulses could be continuously varied. Each leg of the interferometer contained 
an aperture in the shape of an arrow which was imaged onto the photocathode of the pulse-
dilation instrument using a lens placed at the output of the interferometer. The arrow aperture 
in the fixed length leg of the interferometer was pointing in a direction parallel to the plane of 
the optical table, whereas the arrow in the variable length leg was pointing in the vertical 
direction. The two distinguishable apertures allowed unambiguous identification of the light 
pulses in the output images of the instrument. Triggering of the photocathode and FXI 
pulsers was accomplished utilizing the 400 nm light pulse that is also output by the harmonic 
generation module. The 400 nm pulse was focused onto a photodiode of approximately 0.2 
ns rise time. The photodiode output was then sent to a trigger discriminator circuit which 
amplified the photodiode signal and reduced the repetition rate to 50 Hz. A schematic 
diagram of the complete experimental setup is given in Fig. 7. 

 
FIG. 7. Experimental setup used in the pulse-dilation demonstration. (left) Optics 
table used to produce a pair of 100 fs uv light pulses. (right) Pulse-dilation 
instrument components and trigger delay lines. 

In order to produce the desired pulse-dilation factor in the drifting electron signal, the 
arrival of the photon signal at the photocathode must coincide with a specific voltage level 
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(and slope) of the rf excitation delivered by the pulser. Additionally, the gating of the 
microchannel plate detector at the end of the drift region must coincide with the arrival of the 
pulse-dilated electron pulse. These timing conditions were obtained in the following manner. 
First, the photocathode was biased to –700 VDC. Next, the uv pulse traversing the fixed 
length leg of the interferometer (horizontal arrow) was imaged onto the photocathode 
(vertical arrow blocked). The triggering of the FXI gate was then adjusted using variable 
length cables so that the horizontal arrow image was visible on the output phosphor. The 
triggering of the FXI gate was then adjusted by a calculated amount to the time expected for 
the arrival of electrons accelerated by a –4 kV potential. The photocathode was then excited 
by the time varying potential from the hv pulser. The trigger signal to the pulser was adjusted 
using a Kentech programmable delay line (25 ps steps) and a continuously variable trombone 
section of transmission line until the horizontal arrow reappeared at the output phosphor. 
Under these conditions, the instrument is properly timed. 

To measure the temporal response of the instrument, the variable length leg of the 
interferometer was unblocked and the vertical arrow was imaged onto the photocathode. The 
optical path length of the vertical arrow uv pulse was adjusted in small steps and a number of 
output images were captured at each setting. This procedure was repeated until the vertical 
arrow appeared and then disappeared from the output image. Figure 8 shows six output 
images obtained from this experiment. Under each image is the relative change in the optical 
path traversed by the vertical arrow pulse along with the associated time delay. The vertical 
arrow appears and then disappears over a temporal delay adjustment of ~5 ps. A schematic 
representation of the instrument gating condition is shown above each image. The white 
triangle represents the temporal period over which the instrument gate is open. The 
horizontal arrow arrival time is fixed and centered within the instrument gating interval as 
evidenced by its continuous appearance in each image. The arrival time of the vertical arrow 
is changing as its optical path length is varied and it is swept through the gating interval of 
the instrument resulting in its appearance and subsequent disappearance from the images. 
The length of the arrows in Fig. 8 is approximately 4 mm. 

 
FIG. 8. Demonstration of pulse-dilation imaging. Six image frames are shown along with associated vertical 
arrow interferometer path length setting. While timing is set to image horizontal arrow, vertical arrow comes 
into and recedes from view when optical path is varied by 1.5 mm indicating a 5 ps gate width. Depiction of the 
gating condition for each image shown above the images. 
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V.  PROSPECTS FOR ICF DIAGNOSTICS 

Pulse-dilation provides a method for obtaining two dimensional images with gate times 
on the order of several picoseconds. Possible uses for this technology include: measuring 
high energy electron transport rates in fast ignition experiments, analyzing the symmetry of 
late stage implosion of high energy targets and burn wave dynamics for igniting targets. In 
each case, it will be necessary to image the hard x-ray emission source. The pinhole is a 
commonly used x-ray image formation device. However, the pinhole diameter must be small 
in order to achieve good spatial resolution and the light gathering efficiency is 
correspondingly limited. Consider an emission source of 1015 W/cm2 sr keV centered around 
10 keV and suppose we are interested in obtaining images with 5 ps gate times through a 
10 µm pinhole over a 1 keV energy range. The number of photons per resolution element 
arriving at the detector is approximately 

€ 

1.9×106 / p 2 where 

€ 

p  is the pinhole-source distance 
in centimeters. For a photocathode with 1% quantum efficiency for secondary electron 
emission, the pinhole must be no further than 5 cm from the target in order to allow the 
signal-to-noise ratio to reach 30. Primary photoelectrons, which are emitted from the 
photocathode with kinetic energies significantly higher than a few electron volts, are not 
resolved either temporally or spatially by the device and represent a background signal in the 
image. 

In some experiments, pinhole imaging may not provide adequate signal intensity to the 
imager due to low source brightness or a limitation on the minimum pinhole to target 
separation distance. An alternative imaging approach with higher collection efficiency and 
reduced geometric constraints uses a Kirkpatrick-Baez (KB) microscope that forms x-ray 
images using a pair of grazing incidence mirrors. A KB microscope imaging system is a 
potential candidate for use at the National Ignition Facility during experiments on igniting 
capsules when neutron production is expected to be large. 

In order to shield the image recording electronics from excess noise due to neutron 
irradiation, it will be necessary to position the pulse-dilation instrument behind the 2 m thick 
target chamber wall, 19 m from the target chamber center. The KB mirrors are positioned 
inside the target chamber at 1.5 m giving an approximate system magnification of 12. The 
focusing mirror surfaces must be elliptically figured to provide resolution better than 10 µm; 
the on-axis resolution can be considerably better than this, but obliquity will limit the off-axis 
resolution especially near the edge of the field of view.6 The required mirror figure accuracy 
was investigated analytically using the ray tracing program ZEMAX. For analysis, the 
mirrors were approximately 200 mm in length and operating at a grazing angle of 0.75 deg. 
The elliptical mirror shapes were approximated with polynomials and the point spread 
functions were examined for various levels of figure error. The results indicate that an 
aspheric figure error of <2 nm rms yields 5 µm spatial resolution over a 150 µm object plane 
field of view. A conceptual design of the mirror system was completed and it was found that 
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contributions to figure error from gravity sag, mounting stresses, manufacturing tolerances 
and coating non-uniformity can each be reduced to approximately the 1 nm level. 

Fabricating the high collection efficiency optics that satisfy the stringent manufacturing 
tolerances necessary for picoseconds range image gating is costly. Accordingly, it will be 
desirable to obtain multiple frames from each image. Since the hard x-rays are not 
appreciably absorbed in one pass through the transmission photocathode, it is possible to use 
the image repeatedly by arranging for the x-ray signal to intersect a group of transmission 
photocathodes. The magnetic axis of the pulse-dilation instrument may be angled with 
respect to the incident direction of the x-rays. The excitation pulse of each photocathode may 
be timed independently so that the timing of the frame is also independent and a time series 
of frames from a single line of sight image view may be obtained. 
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