STABILITY LIMITS OF HIGH BETA PLASMAS IN DIII-D

E.J. Strait

General Atomics, P.O. Box 85608, San Diego, California 92186-5608

Contact author: E.J. Strait, General Atomics, P.O. Box 85608, San Diego, California

92186-5608, Phone (858) 455-3889, Fax (858) 455-4156,

e-mail: strait@fusion.gat.com

Total pages: 42 (31 text, 11 figures, 0 table)

(Received

Abstract. Stability at high beta is an important requirement for a compact, economically

attractive fusion reactor. DIII-D experiments have shown that ideal

magnetohydrodynamic (MHD) theory is an accurate predictor of the ultimate stability

limits for tokamaks, and the Troyon scaling law has provided a useful approximation of

ideal stability limits for discharges with "conventional" profiles. However, variation of

the discharge shape, pressure profile and current density profile can lead to ideal MHD

beta limits that differ significantly from simple Troyon scaling. The need for profiles

consistent with steady-state operation places an important additional constraint on plasma

stability. Non-ideal effects can also be important and must be taken into account. For

example, neoclassical tearing modes, resulting from plasma resistivity and the nonlinear

effects of the bootstrap current, can become unstable at beta values well below the ideal

MHD limit. DIII-D experiments are now entering a new era of unprecedented control

over plasma stability, including suppression of neoclassical tearing modes by localized

1

current drive at the island location, and direct feedback stabilization of kink modes with a resistive wall. The continuing development of physics understanding and control tools holds the potential for stable, steady state fusion plasmas at high beta.