Pedestal Studies in DIII-D

R.J. Groebner,¹ T.H. Osborne,¹ M.E. Fenstermacher,² A.W. Leonard,¹ M.A. Mahdavi,¹
R.A. Moyer,³ L.W. Owen,⁴ G.D. Porter,² P.B. Snyder,¹ P.C. Stangeby,⁵ T.L. Rhodes,⁶
and N.S. Wolf²
¹General Atomics, P.O. Box 85608, San Diego, California 92186-5608
²Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California
³University of California, San Diego, California
⁴Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
⁵University of Toronto, Toronto, Canada
⁶University of California, Los Angeles, California

Contact Author: R.J. Groebner, General Atomics, P.O. Box 85608, San Diego, California 92186-5608, Phone (858) 455-3997, Fax (858) 455-4156, e-mail: <u>groebner@fusion.gat.com</u>

Total pages: 36 (29 text, 7 figures, 0 tables)

(Received

Abstract. Studies of the H-mode pedestal in the DIII-D tokamak are presented. The global energy confinement increases as the plasma pressure on top of the pedestal increases. The best empirical description for a pedestal width parameter is $\Delta_{pe} \propto \left(\beta_{pol}^{PED}\right)^{0.4}$ where Δ_{pe} is the width of the electron pressure pedestal and β_{pol}^{PED} is the poloidal beta at the top of the pedestal. The edge profiles of electron density n_e , electron temperature T_e and ion temperature T_i can all have different shapes. Thus, a simple width scaling for the edge might not exist, and studies of the physics of individual profiles have been initiated. A model for the n_e profile, based on self-consistent treatment of edge particle sources and edge particle transport, agrees with several

experimental observations. The steep gradient region for the T_e profile often extends further into the plasma than the n_e pedestal step. MHD stability provides the ultimate limits to the evolution of the pedestal and usually leads to edge instabilities called ELMs. However, the absence of ELMs in a regime called the Quiescent H–mode shows that large pedestals can be produced without ELMs.

PACS Nos. 52.55.Fa