Multi-Device Scaling of Neoclassical Tearing Mode Onset with Beta*

R.J. La Haye, R.J. Buttery,¹ S. Guenter,² G.T.A. Huysmans,³ and H.R. Wilson¹

General Atomics, P.O. Box 85608, San Diego, California 92186-5608 ¹Euratom/UKAEA Fusion Association Culham, United Kingdom ²MPI f. Plasmaphysik, Federal Republic of Germany ³Jet Joint Undertaking, United Kingdom, presently at CEA, Cadarache, France

The islands from tearing modes driven unstable and sustained by helically perturbed neoclassical bootstrap current at high beta are often the practical limit to long-pulse, high confinement tokamak operation [1]. In order to predict this beta limit for reactor grade tokamaks, a multi-device database has been assembled of the onset of neoclassical tearing modes (NTM) in Asdex-Upgrade, DIII-D and JET. The discharges studied are ELMy H-mode single-null divertor (SND) at $q_{95} \ge 3$ with m/n=3/2 NTM induced by sawteeth (m/n=1/1 and 2/2). For a classically stable tearing mode, $\Delta' < 0$, the perturbed neoclassical bootstrap current, proportional to beta poloidal β_{θ} , can induce destabilization if β_{θ} exceeds a critical value $\beta_{\theta c} \approx (-\Delta' r) (w_s/r) / (\epsilon^{1/2} L_q/L_p) / (1 - w_{th}^2/w_s^2)$ [2,3], Here w_s is the "seed" island width which must exceed a "threshold" island width w_{th}, i.e. the NTM is destabilized for $w_s > w_{th}$ and $\beta_{\theta} > \beta_{\theta c}$. Scaling or extrapolation to a reactor grade tokamak requires understanding of the scaling of both w_s and of w_{th}. If w_s decreases faster than w_{th} decreases, with ρ_{i^*} , for example, then $\beta_{\theta c}$ can increase as the term $1 - w_{th}^2/w_s^2$ becomes smaller. The relative threshold island width from the polarization/inertial model [4] scales as $w_{th}/r \propto \rho_{i*}g^{1/2}(\epsilon, \nu)$ where $g(\epsilon, \nu)$ is a function of collisionality $\nu = \nu_{i}/\epsilon\omega_{e*}$, g = 1 at $\nu <<1$ and $g = \epsilon^{-3/2} >> 1$ at v>>1. The relative seed island scaling is taken as $w_s/r \propto S^{-\alpha}$ (with α determined from fits to the experimental data) allowing for the dynamics of geometrically coupled perturbations [1,5]. The magnetic Reynold's number scales as $S \propto \beta_N^{1/2} / \nu \rho_{i^*}^3$. Here $\beta_{N}=\beta/(I/aB)$ and $\beta_{N} \propto \beta_{\theta}$ for fixed shape and q_{95} . Thus at low v, $w_{s}/w_{th} \propto S^{-\alpha}/\rho_{i*} \propto \rho_{i*}^{3\alpha-1}v^{\alpha}/\beta_{N}^{\alpha/2}$ and the scaling with ρ_{i*} of w_{s}/w_{th} and thus $\beta_{\theta c}$ depends critically on whether 3α -1>0 or not. Comparison to experimental data gives best fits for $\alpha \approx 1/3 - 2/5$ and suggests that JET (lower ρ_{i*} and higher S values than in Asdex-U or DIII-D) is in a regime where the critical β_N/ρ_{i*} increases with higher S and lower collisionality rather than in a regime where β_N/ρ_{i^*} increases with higher collisionality (Asdex-U and DIII–D). The full size ITER has comparable v and β_N as existing devices but a factor of at least five lower ρ_i *. Thus, the stabilizing $w_{th}/r \sim \rho_i$ * is much smaller, but so is the destabilizing $w_s/r \propto S^{-\alpha} \propto r^{-\alpha}$ $\rho_{i^*}^{3\alpha}$. Uncertainty in α yields a predicted critical $\beta_N \approx 0.5$ for $\alpha = 1/3$ due to $w_s/w_{th} \neq f(\rho_{i^*})$ but stability at $\beta_N=2.5$ for $\alpha=2/5$ if w_s/w_{th} decreases as $\rho_{i*}^{1/5}$.

- R.J. La Haye and O. Sauter, Nucl. Fusion 38 (1998) 987. [1]
- Ì21
- [3]
- O. Sauter, *et al.*, Phys. Plasmas 4 (1997) 1654.
 C.C. Hegna, Phys. Plasmas 5 (1998) 1767.
 H.R. Wilson, *et al.*, Phys. Plasmas 3 (1996) 248.
 C.C. Hegna, *et al.*, Phys. Plasmas 6 (1999) 130.
- [5]

^{*}Work supported in part by the U.S. Department of Energy under Contract No. DE-AC03-99ER54463.