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The islands from tearing modes driven unstable and sustained by helically perturbed
neoclassical bootstrap current at high beta are often the practical limit to long-pulse, high
confinement tokamak operation [1]. In order to predict this beta limit for reactor grade
tokamaks, a multi-device database has been assembled of the onset of neoclassical tearing
modes (NTM) in Asdex-Upgrade, DIII–D and JET. The discharges studied are ELMy
H–mode single-null divertor (SND) at q95 >~  3 with m/n=3/2 NTM induced by sawteeth
(m/n=1/1 and 2/2). For a classically stable tearing mode, ∆′  < 0, the perturbed neoclassical
bootstrap current, proportional to beta poloidal βθ, can induce destabilization if βθ exceeds a
critical value β εθc s q p th
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island width which must exceed a “threshold” island width wth, i.e. the NTM is destabilized
for ws > wth and βθ > βθc. Scaling or extrapolation to a reactor grade tokamak requires
understanding of the scaling of both ws and of wth. If ws decreases faster than wth decreases,
with ρi*, for example, then βθc can increase as the term 1 w /wth
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relative threshold island width from the polarization/inertial model [4] scales as
w r gth i*

1 2∝ ( )ρ ε ν,   where g(ε, ν) is a function of collisionality ν = νi/εωe*, g = 1 at ν<<1
and g = ε-3/2>>1 at ν>>1. The relative seed island scaling is taken as ws/r∝ S-α (with α
determined from fits to the experimental data) allowing for the dynamics of geometrically
coupled perturbations [1,5]. The magnetic Reynold’s number scales as S N
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βN=β /(I/aB) and βN ∝ β θ  for fixed shape and q 9 5 . Thus at low ν,
w w Ss th i* i*
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2∝ ∝− −α α α αρ ρ ν β  and the scaling with ρi* of ws/wth and thus βθc depends
critically on whether 3α–1>0 or not. Comparison to experimental data gives best fits for
α≈1/3–2/5 and suggests that JET (lower ρi* and higher S values than in Asdex-U or DIII–D)
is in a regime where the critical βN/ρi* increases with higher S and lower collisionality rather
than in a regime where βN/ρi* increases with higher collisionality (Asdex-U and DIII–D). The
full size ITER has comparable ν and βN as existing devices but a factor of at least five lower
ρi*. Thus, the stabilizing wth/r~ρi* is much smaller, but so is the destabilizing ws/r∝ S-α  ∝
ρ α

i*
3 . Uncertainty in α yields a predicted critical βN≈0.5 for α=1/3 due to ws/wth≠f (ρi*) but

stability at βN=2.5 for α=2/5 if ws/wth decreases as ρi*
1/5 .
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