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Abstract

As a result of turbulence and finite Larmor radius effects, random radial currents are
present in a tokamak plasma, and these drive sheared axisymmetric poloidal flows.  We
model these currents with a noise source with given statistical properties and calculate the
linear kinetic response to this source.  Without collisions, there is no long term damping
of these flows; when collisions are included, poloidal flows are damped.  The mean
square potential associated with these flows is given in terms of the linear response
function we calculate and a model correlation function for the current source.  Without
collisions, the mean square E × B flow increases linearly with time, but with collisions, it
reaches a steady state.  In the long correlation time limit, the collisionless residual flows
are important in determining the mean square E × B flow.
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I.   Introduction

Sheared poloidal flows are driven by turbulence in tokamaks and are known to
strongly influence the level of the turbulence and transport [1–4].  Both gyrofluid [1] and
gyrokinetic [4] codes show that, with these flows artificially suppressed, the turbulent
heat flux is increased by a factor of 5 to 10.  The damping of these self-generated flows is
therefore an important issue.  In previous work [5], we have shown that linear collision-
less kinetic mechanisms do not damp these flows; poloidal rotation started initially
asymptoted to a finite value at large times.  The predicted value was verified by gyro-
kinetic simulation [6], while gyrofluid models incorrectly predicted a total collisionless
decay of the rotation [7].  We have suggested [5] that this gyrofluid overdamping may
lead to overestimation of turbulent diffusion by gyrofluid codes.  The gyrofluid equations
were derived [1] from the gyrokinetic equation by taking moments and closing the
moment hierarchy by approximations which model kinetic effects.  These include linear
damping terms which are correct for the nonaxisymmetric modes in the turbulence, but are
incorrect for the axisymmetric driven poloidal flows.

We have extended our treatment to include the effects of collisions; in this case, the
poloidal rotation does decay to zero.  The radial wavelengths of the flows we calculate are
assumed to be small compared with the equilibrium scales, and we do not consider the
equilibrium flows due to the equilibrium radial electric field and pressure and temperature
gradients [8].

Our approach to this problem is as follows.  We divide the electrostatic potential
fluctuations into two groups, (i) the nonaxisymmetric fluctuations which include those
which are linearly unstable, which cause the transport, and (ii) the axisymmetric fluctu-
ations which are nonlinearly driven by the first group, and which act to regulate them.
Although a self consistent nonlinear theory of both groups would be desirable, it is
beyond the scope of this paper.  Here, we treat the axisymmetric fluctuations in detail,
with the effect of the nonaxisymmetric fluctuations  modeled as a noise source with
known properties.  We determine the linear kinetic response of the plasma to such a
source. By considering a closely related initial value problem, we compare our results
directly with predictions of gyrofluid and gyrokinetic codes.

The mean square potential associated with these flows is given in terms of the linear
response function we calculate and a model current source correlation function.  Without
collisions, the mean square E × B flow increases linearly with time.  With collisions, the
mean square flow reaches a steady state.  In the long correlation time limit, with reason-
able assumptions about the numerical values of parameters, the collisionless residual
flows are shown to be important in determining the mean square E × B flow.  This
implies that the effect of driven flow shear in suppressing and regulating the turbulence is
not correctly calculated by the gyrofluid equations, which assume zero collisionless
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residual flows.  Since the level of turbulence is known to be strongly regulated by these
self-driven flows, our results imply that this level should be lower than determined by the
solution of gyrofluid equations, which incorrectly predict long term collisionless damping
of the flows.

2.  Drift Kinetic Equation

The fluctuating E × B flows are determined by the potential.  We consider potential
fluctuations which are small but rapidly varying across the magnetic field, with wave-
lengths much smaller than the equilibrium gradient lengths.  The rapid spatial variation of
the potential across the magnetic field is assumed to be contained in an eikonal factor,

    
φ(

r
x,t) = φk exp[iS (

r
x⊥ )], where φk  may depend on position along a field line.  The wave

vector label is defined by     

r
k⊥ = ∇S .  For axisymmetric perturbations,     

r
k⊥ = ′S (ψ )∇ψ

where ψ  is the poloidal flux function, used as the radial coordinate.  We assume
k⊥ai << 1, where ai = (Ti / mi )

1/2 / Ωi is a thermal ion gyroradius, with Ωi = eB / mic.
The potential is determined by quasineutrality:

− n0
e

Ti
k⊥

2 ai
2 φk + nik = nek . (1)

The first term is the polarization density, the second term is the ion guiding center density,
nik = ∫ d3v f ik  and the third term is the electron density, nek = ∫ d3v fek .

The ion guiding center distribution function satisfies the drift kinetic equation:

∂ f ik
∂ t

+ v|| b̂ ⋅ ∇f ik + iω D f ik + e

Ti
F0 v|| b̂ ⋅ ∇φk + iω Dφk( ) − Cii f ik = Sik , (2)

where   ̂b =
r
B / B, and the drift frequency is   ω D =

r
k⊥ ⋅ r

vd , with   
r
vd  the guiding center

drift, or

    
ω D = r

vd ⋅ ∇ψ ′S (ψ ) = v|| b̂ ⋅ ∇Q , (3)

where   Q = I ′S v|| / Ω , with   v|| = [2(E − µB)]1/2  and I = RBφ .  Also F0 is the equilibrium
Maxwellian and Cii  is the linearized ion-ion collision operator.  The independent velocity
variables used are the energy   E = v2 / 2 , magnetic moment µ = v⊥

2 / 2 B , and the sign of
the parallel velocity, σ = sgn(v|| ) .  The velocity integration needed in Eq.(1) is defined in
terms of these by ∫ d3v = π ∫ v2dv Σσ ∫ Bdλ /|ξ | , with   λ = µ / E  and ξ = (1 − λ B)1/2 .

The source term Sik  comes from the E × B nonlinearity in the gyrokinetic equation
[9]:
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Sik = c

B
b̂ ⋅

r
′k ×

r
′′k( )

r
′k

∑ J0 ′k⊥ρ( ) J0 ′′k⊥ρ( )φ ′k f i ′′k , (4)

where   
r
′′k =

r
k −

r
′k , J0  is a Bessel function, and ρ = v⊥ / Ωi . Axisymmetric perturbations

make no contribution to Sik  (since   
r
′k  and   

r
′′k  would be in the same direction).  Therefore

it is reasonable to take Sik  as given, in solving for the axisymmetric potential φk .

The drift kinetic equation for electrons is similar, but the drift terms in Eq.(2) can be
neglected, and J0 ~− 1 in Eq.(4).

We consider the solution of Eq.(2) for times longer than an ion bounce time, in order
to determine the evolution of the potential after the Geodesic Acoustic Modes [10]
(GAMs) have damped.  We take b̂ ⋅ ∇φk = 0 , assuming also that the ion acoustic modes
have Landau damped.  It is sufficient to obtain f ik  to first order in ion banana width
divided by radial wavelength, in order to find the ion density to second order.  The first
order equation is obtained from Eq. (2) by neglecting the iω D f ik  term.  Expanding in
1 / (ωbt) and using Eq.(3), we obtain f ik = − (e / Ti )F0 iQφk + hk , where b̂ ⋅ ∇hk = 0 ,
and  hk  satisfies the bounce averaged drift kinetic equation:

∂ hk
∂ t

− Ciihk( ) = e

Ti
F0 iQ

∂φk
∂ t

+ Sik , (5)

where the bar indicates a bounce average, defined by A = (dl / v||∫ )A / (dl / v||∫ )  with
dl = Bdlp / Bp.  For trapped particles, the integral goes over a closed orbit, while for
untrapped particles, it goes once around the poloidal circumference.  The potential is
determined by the magnetic surface average of Eq. (1), where the magnetic surface
average is defined by 

  
〈A〉 = (dl / Bp∫ )A / (dl / Bp∫ ).

3.  Dielectric Susceptibility and Response Kernel

The Laplace transform of Eq. (5) without the source term, suitably normalized, is

  

G − 1
p

CiiG( ) = v||
B





 F0 . (6)

We define the dielectric susceptibility χ̃ p( p)  in terms of the solution of this equation:

  

χ̃k ( p) = k⊥
2ai

2 + (micI ′S )2

n0e2 d3v
v||
B

v||
B

F0 − G



∫ . (7)

The two terms in the integral come from the guiding center drift contribution to the radial
current, to second order in the ion banana width.
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Quasineutrality is used to solve for the Laplace transformed potential:

n0
e2

Ti
φ̃k ( p) =

〈ρ̃k
(S) 〉

χ̃k ( p)
, (8)

where the Laplace transformed source charge density is obtained from the gyrokinetic
source terms:

  
p ρ̃k

(S) = − i
r
k ⋅

r̃
jk

(S) = e d3v∫ S̃ik − e d3v∫ S̃ek . (9)

The time dependent potential can then be written as

  

φk (t) = d ′t
0

t

∫ K k (t − ′t ) Rk ( ′t ) , (10)

where Rk  is a suitably normalized source current,

  
Rk (t) =

− i〈
r
k ⋅

r
jk

(S) 〉
n0 (e2 / Ti )〈k⊥

2ai
2 〉

, (11)

and 
  
K k  is the response kernel, defined in terms of the susceptibility by the Laplace

inversion integral

  

K k (t) k⊥
2ai

2 = 1
2π i ∫ dp ept

p χ̃k ( p)
. (12)

With this definition, 
  
K k (t)  is simply related to the solution of an initial value

problem, as follows.  If we use a source Sik (t) = f ik (t = 0)δ (t), then we will obtain the
solution of an initial value problem, with f ik (t = 0)  the kinetic initial condition.  We
assume that an initial charge is established in a time larger than a gyroperiod, although
much smaller than a bounce time.  The equivalent source charge density is 〈ρk

(S) 〉
= e〈δ nk (0)〉 , where δ nk (0)  is the initial ion density perturbation.  This is equivalent
to an external charged grid which is placed in the plasma at the initial time.  Through
polarization current, quasineutrality is satisfied during the time this density is established,
so we have an initial potential perturbation given by n0 (e / Ti )〈k⊥

2ai
2 〉φk (0)

= 〈δ nk (0)〉 .  Therefore the Laplace transformed source charge density for this problem is
〈ρ̃k

(S) 〉 = n0 (e2 / Ti )〈k⊥
2ai

2 〉φk (0) / p .  It then follows that the time dependence of the
potential is given by the response kernel:

  
φk (t) = φk (0) K k (t) (13)
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4.  The Collisionless Limit

Neglecting collisions in Eq. (6), the solution is 
  
G = (v|| / B) F0  and after substituting

this into Eq. (7), the susceptibility is  given by

χ̃k ( p) = k⊥
2ai

2 + 1
n0

d3v F0Q Q − Q( )∫ , (14)

where   Q = I ′S v|| / Ω .  In the special case of large aspect ratio circular geometry, this
becomes [5]

χ̃k ~− k⊥
2ai

2 1 + 1.6q2 ε1/2( ) . (15)

The collisionless residual value of the potential is therefore

  

φk (t) φk (0) = K k (t) = 1

1 + 1.6q2 ε1/2 . (16)

This result agrees with gyrokinetic simulations [6] but not with gyrofluid simulations [7],
which give a zero residual potential after many bounce times.

5.  Collisional Decay of Poloidal Flow

We now consider the initial value problem, including collisions.  We must
distinguish the poloidal component of the flow velocity from the E × B flow.  The flow
velocity is given by the sum of parallel and E × B contributions (the perturbed pressure
gradient contributes a flow which is smaller by a factor of k⊥

2ai
2 and is neglected).  The

poloidal flow is determined by a moment of   G .

We use a variational principle for Eq. (6): δV = 0 , where V = N /| A|2  with

  

N = d3v
G *

F0
G − 1

p
CiiG







∫ , (17)

and

  
A = d3v

v||
B

G∫ . (18)

With the constraint   b̂ ⋅ ∇G = 0 , this is equivalent to Eq. (6).  The susceptibility is given in
terms of A  by Eq. (12) or, using Bp =|∇ψ | / R,
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χ̃k ( p) = k⊥
2aip

2 1 + mi I2

n0 Ti 〈R2 〉
A













, (19)

where aip = (Ti / mi )
1/2 / Ωip , the poloidal ion gyroradius, with Ωip = eBp / mi c.  In

Eq. (17) we have assumed that p  is real, so the result will have to be analytically
continued for use in Eq. (12).  We consider separately the limits of large and small | p|τii,
corresponding to short and long times compared with the macroscopic ion-ion collision
time τii , defined in Ref. 11.

6.  Short Time Collisional Decay

To find the time dependence of the potential and the poloidal flow for short times, we
need the solution of Eq. (6) for | p|τii >> 1.  The collisionless solution gives the result to
lowest order, except near the trapping boundary.  Since this is defined by the trapping
value of the pitch angle, the collision operator can be approximated by pitch angle
scattering only [12].  For large aspect ratio circular geometry, with B = B0 / (1 + ε cosθ ) ,
the bounce averages in Eq. (6) can be expressed in terms of elliptic integrals K(k1/2 )  and
E(k1/2 ) , where k = 2ε / (1 + ε − λ B0 ) .

We solve this equation using the variational principle.  Collisions are important in a
boundary layer near k = 1.  Following Ref. 12, we use a trial function

  

G = π
2

v F0
B0

(2ε / k)1/2

K(k1/2 )
1 − exp − γ 1 − k( ) / k[ ]{ } , (20)

which satisfies the boundary condition that   G → 0 at the trapping boundary
k = 1.  Using the variational principle, we find γ = (2εpΛ / νii )

1/2 where Λ
= ln[16(εp / νii )

1/2 ], and νii (v) is the ion-ion collision frequency.  The susceptibility
can be obtained from the variational quantity V .  The result is

χ̃k ( p) = k⊥
2ai

2 1 + 1.6 + 3π (ν / εp)1/2 Λ−3/2[ ] q2 / ε1/2{ } , (21)

where ν  is an average ion-ion collision frequency, ν = 0.61 / τii  and Λ  has been
evaluated at νii = ν .

By deforming the integration path in Eq. (12) to pass around the branch line along the
negative real p  axis, we obtain the response kernel and the time dependence of the
potential for short times:

  

φk (t) φk (0) = K k (t)~−
1
α

exp
β 2

α2 t






erfc

β 2

α2 t1/2





, (22)
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where erfc is the complementary error function,

α = 1 + 1.6q / ε1/2 ,           β = 3πq2 ν1/2 εΛ3/2( ) , (23)

and Λ ~− ln[16(ε / ν t)1/2 ].

The poloidal flow for short times is given by

upk (t) ~− ik⊥
c

B
φk (t) . (24)

The initial decay of the poloidal flow is thus more rapid than a simple exponential
decay because of the collisional boundary layer, in agreement with Ref. 13.

7.  Long Time Collisional Decay

For longer times, we need the solution of Eq. (6) for | p|τii << 1, so the lowest order
equation is obtained by neglecting the first term, i.e.,

  
CiiG( ) = − p

v||
B





 F0 . (25)

where   b̂ ⋅ ∇G = 0 .  We use the variational principle, with the approximation

  

N ~− − 1
p

d3v
G *

F0
CiiG∫ . (26)

We again consider the case of large aspect ratio circular geometry.  We make use of
the fact that the trapped particle region of velocity space is narrow, so the dominant
collision process is pitch-angle scattering.  Using the method of Ref. 14, we find the
dominant contribution to the variational expression V , and after carrying out the integrals,
obtain the susceptibility:

χ̃k ( p) = k⊥
2aip

2 1 + pτd( ) , (27)

where τd = 0.91τii / ε1/2 .  The response kernel is then given by using Eq. (12).

In addition to the bulk ion response, there is a contribution from high energy ions
which have small collision frequencies.  Although such ions are few in number, their
contribution to the poloidal flow decays more slowly than exponential and will dominate
for sufficiently long times.  For these, we use a collision term in Eq. (6) appro-
priate for tail ions with speeds v  satisfying v >> vi , where vi  is the ion thermal speed.
We also assume the speed is small enough that electron drag can be neglected,
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v << (mi / me )1/6vi .  We further neglect energy scattering because it is smaller than the
ion drag term by vi

2 / v2 .  We expand in ε1/2  keeping only the zeroth order term.  The
distribution function is then easily obtained, and the integrals carried out to give the
response kernel.

After combining this with the bulk ion contribution, we obtain

  

φk (t) φk (0) ~− K k
(l)(t) , (28)

where the long time collisional response is

  
K k

(l)(t) =
Bp

2

B2 1 − exp − t / τd( ) + at 3ν0t( )5/9 exp − 3ν0t( )2/3[ ]{ } , (29)

where at ~− 0.98 and ν0 = 1.9 / τii .  The poloidal flow is proportional to

  
K k

(l)(t) − Bp
2 / B2  and is damped.  The damping is slower than exponential for long times

because of ions in the tail of the distribution function.

The potential approaches a nonzero value for long times:

φk (t) φk (0) → Bp
2 B2 , (30)

for t → ∞.  This steady state value can be obtained from toroidal angular momentum
conservation, assuming the initial flow was perpendicular and the poloidal flow has
damped. This is because collisional damping of the toroidal flow is a higher order process
[15].

8.  Complete Time Dependence

We now combine the results for the short and long time collisional decay by
including in the Laplace inversion integral all of the results we have obtained for the
susceptibility in different parts of the complex p  plane.  We include also a contribution
from the fast GAM oscillations, defined so that 

  
K k (0) = 1, and obtain

  
K k (t) = K k

(s)(t) + K k
(l)(t) , (31)

where 
  
K k

(s)(t)  is the short time response

  

K k
(s)(t) = 1 − 1

α




 exp − ν f t( ) cos ω f t( ) + 1

α
exp

β 2

α2 t






erfc

β
α

t1/2



 , (32)
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where ω f = vi / R and ν f = ω f exp(− q2 )  are estimates of the frequency and damping
rate of the GAMs, and α  and β  are defined in Eq. (23).  The ratio of the fast oscillation
frequency to the macroscopic collision rate is ω f τii = q / (ε2/3νi*) , where q  is the
tokamak safety factor, ε  is the inverse aspect ratio, and νi* is the neoclassical ion
collisionality [16].  This response function is plotted in Fig. 1, along with the collisional
part (without the GAM contribution).  The parameter values used are ε = 0.18, q = 1.4 ,
and νi* = 0.04 .

–0.05

0.00

0.05

0.10

0.15

0.20

0.00 0.05 0.10 0.15 0.20 0.25 0.30

K k(t)

t

(a)

(b)

Fig. 1. (a) The short time response function 
  
K k

(s)  versus time, normalized to
τii . (b) The collisional part of 

  
K k

(s)  (i.e., without the GAM contribution).

Since the decay of the poloidal flow is not a simple exponential, we define the total
decay time τ  by

τ = dt
0

∞

∫
upk (t)

upk (0)
. (33)

The integral is equal to the Laplace transform at p = 0 , and we find τ ~−1.5τiiε .  For
small ε , this is much smaller than the time constant τd  found for the long time decay.
Most of the decay occurs in the faster than exponential boundary layer decay phase, which
lasts a time of order τiiε . The numerical value of τ  obtained here agrees with Ref. 13 for
the value of ε  used there.

9.  Response to a Noise Source

We assume that the source current is random and statistically stationary.  Using
Eq. (10), the mean square potential can be written as

  

φk (t) 2 = Rk
2 dt1

0

t

∫ dt2
0

t

∫ K k (t1)K k (t2 )C (t1 − t2 ) , (34)
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where the double brackets indicate a statistical average.  The source current correlation
function   C (τ)  is defined by

  
Rk

*(t1) Rk (t2 ) = Rk
2

C (t1 − t2 ) . (35)

We shall model the noise source correlation function by 
  
C (τ) = exp(− τ2 / τc

2 ) where τc
is the correlation time.

Neglecting collisions, we have

  

d

dt
φk (t) 2 → 2 Rk

2
K k (∞) 2 dτ

0

∞

∫ C (τ) , (36)

for t → ∞, which is a nonzero constant.  Therefore the mean square potential increases
linearly with time for long times, i.e., the E × B flow executes a random walk.

Because of collisions, the response kernel decreases, starting from the collisionless
residual value, Eq. (16), to the value Bp

2 / B2 , which is generally much less than unity.
For the purpose of discussing the response to a noise source, we neglect this long time
residual value.  Then the response kernel is zero for long times, and the mean square
potential reaches a steady state for t → ∞.

In order to facilitate the evaluation of Eq. (34), we replace the error function
expression in Eqs. (31) and (32) with an exponential and neglect the second term in
Eq. (31).  The response function is approximated by

  
K k (t) = 1 − AR( ) e

−ν f t
cosω f t + AR e−νdt , (37)

where AR = 1 / (1 + 1.6q2 / ε1/2 ) is the collisionless residual value, and νd = 0.67 / (τiiε )
using the total decay time defined in Section 8.

Gyrofluid codes [1] compute the fast time response approximately correctly, but
incorrectly give a long time residual potential of zero.  A condition for the validity of these
codes is therefore that the residual value AR  makes a negligible contribution to the steady
state mean square potential. We evaluate Eq.(34) for t → ∞, assuming the correlation
time of the turbulence is much longer than the GAM oscillation period, ω f τc >> 1, and
that the GAMs are weakly damped, ω f >> ν f .  In order to obtain a simple estimate, we
also take νd / ν f ~ νdτc ~ 1 and obtain

φk (∞) 2 Rk
2 ~

ν f
2

ω f
4 + AR

2 τc
νd

. (38)
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Using νd / ω f = (ε1/2 / q) νi*, the condition for neglecting the residual flow becomes

1
ν f τc











ν f

ω f











3
ε1/2

q







1 + 1.6q2 ε1/2( )2

νi* >> 1 . (39)

The small factor (ν f / ω f )3 occurs because the rapidly oscillating terms in the
response function lead to near cancellations in the integrals in Eq. (34).  For typical
interesting values of q  ( > 1) and ε  (not extremely small), this is not satisfied except for
very large values of νi*, i.e., not in the banana regime, where νi* < 1, as we have
assumed.  The gyrofluid closures are therefore not justified in the banana regime, for
typical interesting values of q  and ε .

11.   Conclusions

We have extended our previous work [5] to include ion-ion collisions.  We have
formulated the problem of calculating the driven flows as the linear kinetic response to a
noise source with given statistical properties.  We have shown the relation of this
formulation to an initial value problem for the potential.  When this initial value problem is
considered, we find that the plasma response occurs in five distinct phases, involving
different physical processes, as follows.

(1) For times longer than a few gyroperiods, the classical polarization shields the
radial electric field.  (We have assumed that this has already occurred.)

(2) For times longer than a few ion bounce times, or after Geodesic Acoustic Modes
have damped, the potential has a nonzero residual value given by Eq. (16).

(3) For times of the order of ετii ,  where τii  is the macroscopic ion-ion collision
time, the potential and poloidal flow damp more rapidly than exponentially, as collisions
first have an effect in a boundary layer.  Most of the poloidal rotation decay occurs in this
phase.  The results are given by Eqs. (22) and (24).

(4) For times comparable to τii / ε1/2 , the potential approaches a nonzero steady
state value and the poloidal rotation decays approximately exponentially with the time
constant τd = 0.91τii / ε1/2 .

(5) For times much longer than τii , the damping of poloidal rotation is due to
energetic ions with small collision rates, resulting in a slow non-exponential decay, given
by the last term in Eq. (29).

We have shown that a condition for the validity of the gyrofluid codes [1] is not
satisfied for typical parameters.  We conclude that, at least near marginal stability where
nonlinear damping of the flows should be negligible, and in the sufficiently collisionless
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regimes of interest (in the banana regime), the level of E × B flows should be larger than
predictions made by gyrofluid simulations which entail linear collisionless damping.
Consequently, the turbulence level and transport should be smaller than the gyrofluid
predictions.

A rough measure of the effective shear suppression of turbulence is given by
Eq. (38).  This is approximately proportional to 1 / νi*, which increases with ion
temperature.  Thus, we may expect better confinement at higher temperatures because of
the larger mean square poloidal flows and the increased shear suppression of turbulence.
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