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Tokamak performance is often controlled by stability of the edge plasma. Consistent with
“stiff” transport models, the confinement in tokamak discharges is strongly correlated with the
magnitude of the edge pressure pedestal which is limited by MHD stability. Edge stability
determines the maximum sustainable pressure gradient at the edge and is believed to be
responsible, at least in part, for ELM behavior. High mode number ballooning stability ap-
pears to be insufficient to explain edge observations. The local pressure gradient near the
boundary in DIII–D ELMing H–mode discharges may exceed the first regime ideal balloon-
ing limit by as much as a factor of two [1]. This disagreement between theory and experiment
may be resolved by the inclusion of the self-consistent bootstrap current in the analysis [2].
However, the inclusion of edge current density is destabilizing for peeling modes [3].

Recently researchers at Culham [4,5,6] developed a high-mode-number peeling/
ballooning mode model at the tokamak edge in which a critical role is played by the edge
current density. The bootstrap current density, with its dependence upon pressure gradient and
collisionality, is then an important element of any realistic edge stability calculation. When
ohmic and bootstrap current effects are included, this model suggests a power threshold for
L–H transitions and provides a plausible explanation for an ELM cycle. This edge model was
originally cast in a large aspect ratio circular geometry [6]. Here we extend the analysis to
finite aspect ratio and non-circular geometry. The effects of plasma shape are studied using
local equilibrium models [7,8] and reconstructed experimental equilibria for direct
comparison with experiment. This edge model describes the interaction of peeling mode
(current driven) and ballooning mode (pressure driven) effects at high, but finite, mode
number. The peeling mode criterion [6,3] for stability is given by
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where DM is the Mercier quantity, and DM <1/4 is required for stability to interchange modes.
The destabilizing effect of positive parallel current density is evident. This criterion was
developed assuming a mode structure highly localized at the edge of the plasma, an
assumption which the full code tests. At large pressure gradients, the ballooning mode
becomes important, but the conventional ballooning mode formalism is invalid at the plasma
edge. The edge model correctly accounts for the plasma edge and determines that ~n1/3

poloidal harmonics couple [4,5,6] to form a mode as compared with ~n1/2 poloidal harmonics
for the conventional mode.
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A 2D eigenvalue code has been written to determine the marginal edge current density or
the marginal magnetic shear s for high mode numbers, based upon high n expansion of δW of

Connor, Hastie, and Taylor [9]. Here, because the modes reach the edge of the plasma, a
surface contribution arises from an integration by parts, and a vacuum contribution is present
as well. A set of 1D Euler Lagrange equations for the Fourier amplitudes of the radial
displacement is obtained. The boundary conditions on these differential equations are
obtained from a minimization of δW. The vacuum matrix is computed from a modified

version of a code by A. Pletzer [10]. The code is constructed in such a way that additional
physics effects such as rotation may be added and further terms can be included to accurately
treat intermediate mode numbers.

Since the modes we wish to analyze are localized to the edge region, only localized
equilibrium information is required. We use a localized equilibrium model [8] for circular or
dee-shaped plasmas which requires a total of nine parameters including aspect ratio, height to
width, triangularity, magnetic shear s, and normalized pressure gradient α. The code can also

treat full 2D numerically generated equilibria.
In Fig. 1 we show a number of results for two circular equilibria at aspect ratio A=1000

and A=3 in s-α space. The infinite-n ballooning s-α  curve is shown for each. The nose of the

s-α  diagram for the A=3 case is at significantly higher s, due to the larger magnetic well at

low aspect ratio, DM~ 
α ε
s

1
1

q2 2( )−  where ε is the inverse aspect ratio. Also shown for each

case is the peeling mode criterion, Eq. (1). The larger negative slope of the criterion for the
A=3 equilibrium is due to the larger magnetic well. The solid curves are the edge code results
with toroidal mode number, n=20. At low α  the modes follow the peeling mode boundary and

at large α approximate the infinite-n ballooning mode boundary. As anticipated, these results

are similar to the previously studied s-α  model [6].

In Fig. 2(a,b) are two unstable eigenmodes for the A=3 case for low and high values of α
respectively. At low α , the peeling mode character is evident, while at large α, significant

mode coupling arises for the ballooning mode.
A number of models have been put forward to explain ELM behavior. A recent survey

was given by Connor [11]. The stability diagram in Fig. 1 suggests one such model for Type I
Elms [6]. This is shown schematically in Fig. 3 in Jedge-α  space where Jedge is the edge
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Fig. 1 Separate peeling stability boundary, infinite n ballooning stability boundary, and combined stability
boundary for n=20 using the edge code for a) A=1000 and b) A=3. The shading indicates the unstable region
determined by the edge code. Inside the dotted curve is unstable to infinite n ballooning; beneath the dashed line
is unstable to the peeling mode.
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Fig.2 Unstable eigenmodes for A=3 at a) α=0.1 and b) α=1.1

current density. In general, a flux-surface

averaged Jedge ∝   < ⋅ ∇ >−J B ψ 2  is linearly

related to the shear, Jedge=C1–C2 s. For the s-
α  model circular equilibrium Jedge/Jave=1-

s/2. In phase 1, heating at the edge raises the
pressure gradient and a transition to
marginally stable large pressure gradient
occurs. In phase 2, on a slower resistive time
scale, bootstrap and ohmic currents rise and
marginal stability is maintained by a slight
reduction of pressure gradient. In phase 3, a
continued increase of edge current cannot be
stabilized at large pressure gradient, the
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Fig. 3 Model for Type I ELM. Evolution along paths 1
and 2 are stable. Onset of instability at beginning of
phase 3.

plasma evolves into the unstable region and a Type I ELM crash occurs.
One characteristic of the stability diagram for peeling/ballooning modes as shown in

Fig. 1 is that there appears to be no access to second stability. This is due to the rather weak
magnetic well, even at A=3, which makes the peeling mode relatively insensitive to α  and

places the nose of the s-α  ballooning diagram at a somewhat low value of s. However, more

strongly shaped equilibria do exhibit second stable access. Stability results for A=3, κ=1.8,

δ=0.5 are shown in Fig. 4(a). In this case the peeling mode stability boundary is seen to pass

under the nose of the infinite-n s-α ballooning boundary. Calculation with the full edge code

shows access to large α as well. In Fig. 4(b) the marginally stable eigenmode at α=3 shows

that the mode is still essentially peeling although there is significant mode coupling.
We have calculated the separate ballooning and peeling stability of several DIII–D

experimental equilibria. With the inclusion of the peeling mode, not all of these equilibria
possess access to the second stability regime and the experimental shear values lie near the
boundary of the peeling mode. The calculated loss of second regime access in highly squared
plasmas, for example, may help to explain the experimentally observed higher frequency
ELMs and reduced edge pressure gradient of these discharges.
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Fig.4 A=3 dee with κ=1.8 δ=0.5 stability a) s-α diagram, b) eigenmode at s=4.98 α=3. Code results used 28
poloidal harmonics which may be insufficient above α~4.

In summary, A 2D δW edge code has been constructed that analyzes edge modes not
addressed by the traditional low-n δW codes nor the high-n ballooning codes. Ideal MHD
stability calculated for high n localized near the edge of the plasma show peeling behavior at
low α, driven by toroidal current, with a transition to modified ballooning behavior at high α.
With sufficient magnetic well, second stable access is possible. Stability diagrams suggest a
possible model for Type I ELMS.

The inclusion of a separatrix, a future development planned in this work, will introduce
two new effects: every resonant surface occurs inside the plasma boundary and even at high
toroidal mode number, n, the variation of q and s across the mode width will be large.
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