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Abstract 

The mean field toroidal and parallel momentum transport equations will be shown to admit both one-

step transitions to suppressed transport (L/H) and limit cycle oscillations (LCO). Both types of transitions 

are driven by the suppression of turbulence by the mean field ExB velocity shear. Using experimental data 

to evaluate the coefficients of a reduced transport model, the observed frequency of the LCO can be 

matched. The increase in the H-mode power threshold above and below a minimum density agrees with the 

trends in the model. Both leading and lagging phase relations between the turbulent density fluctuation 

amplitude and the ExB velocity shear can occur depending on the evolution of the linear growth rate of the 

turbulence. The transport solutions match the initial phase of the L/H transition where the poloidal and ExB 

velocities are observed to change, and the density fluctuations drop, faster than the diamagnetic velocity.   
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1. Introduction 

The focus of this paper is to show that the mean field momentum transport equations 
have both one-step L/H transitions and limit cycle oscillations (LCO) or dithering 
transitions. A simplified model, based on the properties of gyrokinetic turbulence, is used 
to demonstrate the two types of solutions. The data from the L-mode phase of a DIII-D 
[1] tokamak discharge 140426 at 1265 ms at the major radius of R=2.265 m (toroidal flux 
surface 

€ 

ρ = 0.98) prior to the LCO will be used to evaluate the model parameters as 
much as is possible. This will be referred to as the reference data. A summary of the data 
used is given in table 1. Extensive turbulence measurements during the LCO phase have 
been made for this discharge and similar ones and published in reference [2]. The 
calculated velocities and density fluctuation amplitudes in this paper can be compared 
with the measurements in reference [2] by the reader. The reasonable agreement with the 
data achieved with such a simple model verifies that the mean field transport equations 
contain the right physics to simulate the LCO and L/H transitions. The simple model also 
shows trends in qualitative agreement with the power threshold scaling with density. 
Oscillating solutions of the toroidal and parallel (or poloidal) momentum transport 
solutions have been observed in previous phenomenological modeling of internal 
transport barrier dynamics [3,4]. Analysis of the LCO solutions in this paper identify the 
cause of the oscillations. It is well established that ExB velocity shear supresses 
turbulence and improves transport in all channels: energy, particle, momentum [5]. One 
outstanding puzzle has been the observation that the velocity of the plasma changes first 
and faster than the pressure or density profiles [6]. This is known as the L/H "trigger". In 
this paper it will be shown that the mean field momentum transport provides this fast 
change in velocity that triggers the suppressed turbulence. Particle and energy transport 
would also be improved but will not be included in the modeling in order to clearly 
demonstrate that the oscillation is due to momentum transport physics. This work 
establishes that the mean field transport equations can, in principle be a predictive theory 
of the L/H transition, given an accurate model of the turbulence driven fluxes in all 
channels. There are many physical effects that can be important in momentum transport 
that will not be considered in this work. In particular, the ion orbit loss cone at the 
separatrix [7,8] and the reduction of the poloidal damping term at high mach number 
[7,8] are neglected. The turbulent momentum transport and poloidal damping by 
Coulomb collisions are assumed to be the dominant contributions.  



 H-MODE TRANSITIONS AND LIMIT CYCLE OSCILLATIONS FROM 
G.M. Staebler & R.J. Groebner  MEAN FIELD TRANSPORT EQUATIONS 

2 GENERAL ATOMICS REPORT GA-A27860 

Table 1 
Local data for DIII-D discharge 140426 at 1265 ms and ρ=0.98 

ne Te Ti Lne LTe LTi χ tot cs 

1.7x1019/m3 64 eV 150 eV 9.26 cm 1.37 cm 4.16 cm 10.3 m2/s 5.4x104 m/s 

R r Rref Bref q Bz Bunit ρ s 

2.265 m 58.0 cm 1.68 m -2.01 T 4.5 -0.34 T -2.93 T 0.039 cm 

cpar cper ctor ν exch ν i νpol Ω s ν i
* 

0.502 0.663 1.063 684/s 4790/s 632/s 6.6x107/s 4.5 
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2.  Mean Fields and Fluctuations 

It is important to verify that there is sufficient time scale separation to define the 
mean fields and fluctuations. The mean fields are defined as an ensemble average of the 
total fields involving both space and time averages [9]. For example the ensemble 
average A of some field A (i.e. electric, magnetic or particle distribution) could be a 
magnetic flux surface average A  followed by a moving boxcar time and radius average 
with averaging time 

€ 

τ and length L. The length and time scales of the averaging are 
chosen to give separation A =A0 + A  between the fluctuating A  and mean fields 

€ 

A0. 
The fluctuations are annihilated by the ensemble average A = 0 . In general, the time 
average has to be longer than the decorrelation time of the turbulence. For the 
experimental conditions of the reference L-mode plasma prior to the onset of the LCO 
(table 1) the measured decorrelation time of the density fluctuations was 2 

€ 

µs  [2]. The 
LCO period for the reference data was 625 

€ 

µs  and the fastest timescale (fluctuation drop) 
of the L/H transition is about 100 

€ 

µs  [10]. The solutions to the momentum transport 
equations will be shown to reproduce both the LCO and L/H timescales so, for the 
purpose of separating fluctuations and mean fields, a 100 

€ 

µs  time average is optimal. 
This is 50 times the decorrelation time so there is enough time separation to average out 
the fluctuations. The Doppler shift velocity of the turbulence measured with Doppler 
backscatter (DBS) is averaged over 100 

€ 

µs  [2]. Thus, the Doppler shift velocity 
measured by DBS should be considered the mean field ExB velocity contribution that can 
be compared with the transport solution for the ExB velocity. The term zonal flows has 
often been used in the literature to refer to the ExB velocity due to an axisymmetric radial 
electric field without separation of timescales. Using the ensemble average separates 
zonal fluctuations from the mean field ExB velocity. The zonal fluctuations, are governed 
by the gyrokinetic equation on the decorrelation timescale that is far faster than the 
observed LCO oscillations and are filtered out of the time average DBS data.  

The separation of faster fluctuations from slower mean fields is the basis for 
traditional ordering expansions. Systematic derivations of the gyrokinetic equation [9] for 
the fluctuations and transport equations for the mean fields, including both turbulence 
driven fluxes and Coulomb collision terms, have been published [11–13]. Because of the 
conservation of total momentum (summed over all species a = ions, electrons) by the 
coulomb collision operator there are no Coulomb force terms in either the total toroidal or 
parallel momentum transport equations [14]. Hence, the parallel momentum balance 
equation will be the most susceptible to modification by turbulence from the neoclassical 
result [13].  The total toroidal and parallel to the magnetic field 


B( )  

momentum transport 
equations in the right handed toroidal coordinates (R,ϕ, Z)  averaged over a magnetic 
flux surface are [13]
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The mean velocity is ua( ) , the mean density is 

€ 

na and the mass is 

€ 

ma. The external 
momentum sources are 


Sa( ) . There are, in general, turbulent and collisional contributions 

to the stress tensor 

Πa =


Πa
turb +


Πa
col( ) . The importance of the parallel momentum 

transport equation for H-mode was first emphasized by Rozhanski and Tendler [15].  

The 1st order in ρs L  mean field species velocities are within flux surfaces and 
incompressible [13]. For low mach number they can be written in terms of two flux 
functions Ka,Ωa( ) : ua=


BKa+R

2

∇ϕΩa . The flux surface average velocities are 

R2

∇ϕ⋅
ua Rref = cperua,pol + ctor uExB + ua,dia( )    , (3) 


B⋅ ua Bref = cparua,pol + cper uExB + ua,dia( )    , (4) 

where	
   cper = R2

∇ϕ⋅

B RrefBref( ) , cpar = B2 Bref

2 , ctor = R2 Rref
2 , 

ua,pol = BrefKa , uExB = Rref


∇ϕ⋅

E×

B B2 , ua,dia = − Rref eana( )


∇ϕ⋅

∇Pa ×


B B2 , 

uExB + ua,dia = RrefΩa . The reference magnetic field 

€ 

Bref  is the vacuum field at the 
geometric center of the vacuum chamber at major radius Rref  (table 1). There are three 
mean field velocities for the main ions 

€ 

ui,pol,uExB,ui,dia( ) . The diamagnetic velocity is 
determined by particle and energy transport. The ExB velocity is the same for all species. 
The total parallel and toroidal momentum transport equations [equations (1,2)] solve for 
the ExB velocity and a poloidal velocity common to all species [14]. The neoclassical 
equations are used to compute all of the poloidal velocity differences that contribute to 
the collision operator. For a pure plasma, this is just the poloidal (bootstrap) current. This 
is the minimal modification of neoclassical theory due to turbulence [13]. Note that 

€ 

ui,pol 
is related to the vertical velocity vi,z  that is usually the measured “poloidal” velocity by 
vi,z =

ui ⋅

∇Z = ui,polBz Bref . Charge exchange recombination spectroscopy [6] can 

measure the mean poloidal velocity. The turbulence based methods [16–18] measure the 
time averaged Doppler shifted phase velocity of the turbulence. Only the mean ExB 
toroidal velocity contributes to these measurements even if the measurement is of the 
time delay in the poloidal direction [17,18]. The mean poloidal velocity is parallel to the 
magnetic field and hence contributes very little to the Doppler shift due to the small 
parallel wavenumbers of the gyrokinetic turbulence compared to the perpendicular 
wavenumbers. The ExB velocity that is measured by the Doppler shifted phase velocity is 
vExB = uExB  r Rrefq( ) . Hence the "u" velocities are approximately toroidal projections and 
the "v" velocities are approximately perpendicular projections.  The poloidal velocity 
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shear only contributes to the parallel velocity shear in the gyrokinetic equations and this 
is a destabilizing term [19]. Only the shear in the ExB mean velocity Doppler shift is 
stabilizing to the turbulence apart from "profile shear" effects that cause radial variations 
in the eigenmode frequencies [20]. Since the mean ExB velocity is purely toroidal, it also 
contributes to the destabilizing parallel velocity shear. The mean diamagnetic torodial 
velocity contributes to the phase velocity of the turbulence through its frequency. It also 
contributes to the parallel velocity.  
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3.  L/H and LCO Solutions 

In order to make analysis of the solutions easier the following simplifications are 
made. A pure plasma is assumed with a single ion species (suppressed species index). 
The electron inertia and stress are neglected due to the small electron mass. The ion 
density (n) and the geometry coefficients are taken to be constant. Radial derivatives of 
only the velocities are retained. The momentum transport equations [equations (1,2)] are 
reduced to: 

∂
∂t

mn cperupol + ctor uExB + udia( )"# $%+
∂Πtor

∂r
= Stor    , (5) 

∂
∂t

mn cparupol + cper uExB + udia( )"# $%+
∂Πpar

∂r
+mnνpol upol − upol

neo( ) = Spar    . (6) 

The neoclassical parallel collisional stress yields the poloidal damping terms in 
equation (6). The poloidal damping rate νpol =µ11 mini( )  is determined from the 
NCLASS [21] code coefficient µ11( ) . The poloidal damping rate νpol  has a complex 
dependence on the ion-ion collision frequency νi  [14]. At low collision frequency, in the 
banana regime, the poloidal damping rate is proportional to collision frequency. At high 
νi , in the Pfirsch-Schluter regime, the poloidal damping rate decreases with collision 
frequency νpol ∝ωt

2 νi  where ωt = Ti mi Rq( )  is the ion transit frequency. The 
L-mode reference data (Table I) is in the Pfirsch-Schluter regime 
ν* = νi ωt r R( )

3
2( ) = 4.5( ) and the poloidal damping rate is decreasing as the separatrix 

is approached (increasing νi ).  

The most natural two independent velocity variables for the turbulent stresses are 
parallel and ExB toroidal upar, uExB( ) , where upar =


B⋅ u cperBref . The poloidal velocity 

is eliminated using upol = upar − uExB − udia( )cper cpar  and 

€ 

aper = ctorcpar cper
2 −1 . 

Motivated by gyrokinetic turbulence results [20] the stresses are taken to have the form: 

Πturb
tor =

cper
2

cpar
mn −Φ2dtor

∂
∂r
upar −βtoruExB( )

&
'
(

)
*
+

   , 

Πturb
par = cpermn −Φ2dpar

∂
∂r
upar −βtoruExB( )

&
'
(

)
*
+

   . (7) 

The momentum diffusion coeffients dpar, dtor( )  are taken to be constants as are the two 
coefficients of the stress due to the shear in the ExB velocity Doppler shift βpar,βtor( ) . 



 H-MODE TRANSITIONS AND LIMIT CYCLE OSCILLATIONS FROM 
G.M. Staebler & R.J. Groebner  MEAN FIELD TRANSPORT EQUATIONS 

8 GENERAL ATOMICS REPORT GA-A27860 

The contribution due to parallel velocity and up/down symmetry breaking of the flux 
surfaces and other effects [20] are neglected. The geometry coefficients in equation (7) 
were chosen to reduce the number of coefficients that appear in the final form of the 
equations. Gyrokinetic turbulence simulations have shown that the ExB velocity shear 
causes a shift in the radial wavenumber spectrum of electric potential fluctuations. The 
normalized peak of the shifted potential spectrum that appears in equation (7) is well 
modeled by the “spectral shift” model [22] which for a single poloidal wavenumber ky  is 

  Φ =
γ γ0

1+ 0.56 kx ky
2#

$%
&
'( 1+ 1.15 kx ky( )

4#
$%

&
'(

   , (8a) 

kx ky ≅ −0.36 γExB γ    ,        γExB = −
r

Rrefq
∂uExB
∂r

   . (8b) 

The linear growthrate γ  is here a representative value for the 

€ 

ky -spectrum. The linear 
growthrate at the peak of the potential spectrum is a good choice. This is typically 1/3 
smaller than the maximum linear growthrate of the spectrum. The potential is normalized 
by γ0 . The spectral average radial wavenumber shift kx ky , induced by the ExB 
velocity shear has been simplified from its more general form [23]. The coefficients in 
equation (8) are not adjustable parameters to fit experiment but were determined from the 
properties of the potential spectrum in gyrokinetic turbulence simulations [22].  

The collisional contributions to the perpendicular stresses are: 

Πtor
col =

cper
2

cpar
mn −dneo

∂
∂r
upar + aper uExB + udia( )$% &'

(
)
*

+
,
-

   , Πpar
col = cpermn −dneo

∂upar
∂r

$
%
&

'
(
)

   . (9) 

The turbulent coefficients 

€ 

dtor ,dpar( ) are typically two orders of magnitude larger than 
the Coulomb one 

€ 

dneo [24]. 

The equations are further reduced to a local flux surface 

€ 

rs by expanding the three 
mean velocites:  uExB = ûExB t( )h r( ) , upar = ûpar t( )h r( ) , udia = ûdia t( )h r( ) . A common 
radial profile function is assumed h =1− r − rs( ) Δr − 0.5 r − rs( )2 Δr

2  to reduce the number 
of free fitting parameters to just the one length Δr . The diamagnetic velocity is treated as 
an external driver and will be ramped linearly in time ûdia = û0 1+ ctt( ) . The neoclassical 
ion poloidal velocity is simplified to be proportional to the diamagnetic velocity 
upol
neo = cneoudia . Substituting the local radial expansion into the momentum transport 

equations and evaluating the result at the flux surface 

€ 

rs gives the final local equations 
that will be solved.  
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€ 

∂
∂t

ˆ u par + aper ˆ u ExB + ˆ u dia( )[ ] −Φ1
2 dtor
Δr

2 ˆ u par −βtor ˆ u ExB[ ]
 

€ 

−
dneo
Δr

2 ˆ u par + aper ˆ u ExB + ˆ u dia( )[ ] = ˆ S tor    , (10) 

∂
∂t
ûpar −Φ1

2 dpar
Δr
2 ûpar −βparûExB&' ()−

dneo
Δr
2 ûpar + νpol ûpar − ûExB − 1+ cneo( ) ûdia( ) = Ŝpar    , (11) 

where m n Ŝtor = Stor cpar cper
2 , m n Ŝpar = Spar cper . The common intensity factor has been 

modified to Φ1
2 =Φ2 +Δr∂Φ

2 ∂r . For the special case of a constant linear growthrate 
γ = γ0  this reduces to Φ1

2 =Φ2 + γExB∂Φ
2 ∂γExB . This "intensity slope" function 

€ 

Φ1
2  and 

the intensity 

€ 

Φ2  are plotted in figure 1. The 
reduction of the intensity with increasing γExB  
causes 

€ 

Φ1
2  to become negative above a critical 

value of γExB . A negative 

€ 

Φ1
2  causes the normally 

dissipative turbulence terms in equations (10) and 
(11) to become drive terms which is the sole cause 
of both the L/H and the LCO transitions. It is 
important that 

€ 

Φ1
2  is positive for low γExB  so that 

there is a stable L-mode equilibrium.  

Solving the local momentum transport system, 
without sources, using MathematicaTM gives the 
particular case with limit cycle oscillations of the 
2D momentum transport system shown in figure 2 
for the ExB (Doppler phase) velocity  (a) The density fluctuation amplitude n n = 0.25Φ  
normalized to the arbitrary unit level of the L-mode measurement in reference [2] (b) and 
the vertical velocity (c). The parameters of the model were taken from the data as much 
as possible:  aper = 0.215, cneo = 0.2, dpar = dtor =10m

2 s, dneo = 0.01dpar, νpol = 632 s . The 
two coefficients of the Doppler shear pinch, the gradient scale length and the reference 
linear growth rate were chosen to approximately fit the LCO measurements in 
figure 4(a,d) of reference [2] at R=2.27	
  m 

€ 

βtor = 0.1, βpar = 0.17, Δr = 0.018 m,(  

€ 

γ = γ0 = 0.766 ×105 rad/s) . The dashed line in figure 2(a) is minus the diamagnetic 
velocity. During the LCO, the ExB velocity is not equal to the diamagnetic velocity but it 
becomes close to it after the oscillations cease in the H-mode. The neoclassical vertical 
velocity is shown in figure 2(c) as a dashed line. The simulated vertical velocity settles to 
the neoclassical value in the H-mode. The LCO frequency given by the model is 1.5 kHz 
which is a good fit to the observed value of 1.6 kHz. The magnitude of the ExB velocity 
is well matched. The oscillating poloidal and ExB velocities tend to cancel in the parallel 
and toroidal velocity but there is a net parallel velocity oscillation during the LCO. The 
ExB velocitity shear rate is just the ExB velocity [figure 2(a)] divided by the constant 

Fig. 1. Spectral shift model 
[equation (8)] for the peak of the 
spectrum of electric potential fluctu-
ations 

€ 

Φ2  (solid) and 

€ 

Φ1
2 =Φ2 + γExB∂Φ

2 ∂γExB  (dashed) 
as a function of 

€ 

γExB γ  for a constant 
linear growthrate 

€ 

γ . 
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gradient scale length Δr  and is about a 
factor of 2 lower than the measured value. 
The fitting of the model to the data is quite 
constrained but not unique. The gradient 
scale length can be reduced to better fit the 
ExB velocity shear but then the LCO 
frequency is reduced. The LCO frequency 
can still be matched by reducing the 
coefficient βpar . However, the maximum 
vertical velocity during the LCO then 
increases and it is already too large. The 
case in figure 2 is a compromise. 

Scanning only the poloidal damping rate 
shows that the frequency of the LCO goes 
up linearly with increasing poloidal 
damping rate as shown in figure 3. This 
qualitatively agrees with the trend in the 
DIII-D data that shows the LCO frequency 
increases with decreasing density (recall the 
poloidal damping rate scales inversely with 
the ion-ion collision rate which increases 
with density). The line average density of 
the reference discharge was 
nref = 2.65×10

19 m3 . Using the poloidal 
damping rate to scale the line average 
density gives n = nref 632 νpol . The value of 
the diamagnetic velocity is a proxy for the 
heating power. The critical value of the 
diamagnetic velocity at the onset of the 
LCO and the value required to lock in the 
H-mode is shown as a function of the scaled line average density in figure 4. This is 
qualitatively similar to the dependence of the H-mode power threshold (diamagnetic 
velocity at H-mode) on the line average density with both a linear rise in the power 
threshold with density above the minimum and a strong increase in the power threshold at 
low density [16]. All of the other parameters were held fixed in the poloidal damping rate 
scan. The LCO frequency also depends on the diffusion rate dpar Δr

2

 and the difference 
of the Doppler shear coefficients βpar −βtor( )  in a linear way. This gives a measure of the 
sensitivity of the results to errors in the date used to constrain the model. The high-
density increase of the L/H threshold in figure 4 is caused by the decoupling of the 

Fig. 2. Time history of the ExB velocity (a) 
relative density fluctuation amplitude (b) and 
vertical velocity (c) for an LCO case with 
constant growth rate. 

Fig. 3. Variation of the LCO frequency with 
poloidal damping rate about the reference data 
point (grey star). 



H-MODE TRANSITIONS AND LIMIT CYCLE OSCILLATIONS FROM 
MEAN FIELD TRANSPORT EQUATIONS G.M. Staebler & R.J. Groebner 

 GENERAL ATOMICS REPORT GA-A27860 11 

L-mode ExB velocity from the diamagnetic 
velocity at low poloidal damping rate. The 
reduction of the L/H threshold with 
decreasing density carriers onto the LCO 
threshold curve in figure 4 but the L/H 
threshold rises sharply below a minimum. 
This sharp rise in the L/H threshold is due 
to the ExB velocity being prevented from 
growing enough to reach the H-mode by 
the LCO as explained in the next section.  

The large vertical velocity excursion 
during the LCO [figure 2(c)] can be 
reduced by allowing the parallel and ExB 
velocity gradients lengths to differ. It can 
also be reduced by including the linear growth rate dependence upon the parallel velocity 
shear: γ = γ0 +αKH0.08 ∂upar ∂r . This is a physical effect in gyrokinetic theory [19] 
(Kelvin Helmoltz type mode). The coefficient 0.08 is determined from the GA standard 
case [20] but a fitting  parameter αKH  is included. Using the more physical growthrate in 
the spectral shift model gives a rapid LCO (2.2 kHz) that decays to a quiet phase 
followed by an L/H transition. This three-stage transition is not seen in the data. In order 
to get back the two-stage transition adjustments were made 

€ 

βpar = 0.24, γ0= 0.38 ×105 rad s, αKH = 0.11( ) . The ramp rate of the diamagnetic 
velocity was also reduced. The resulting waveforms are shown in figure 5. The parallel 
velocity shear KH drive suppresses the large 
excursion of the vertical velocity in 
figure 5(c) so it is now in the observed 
range for the main ions [25]. The LCO in 
figure 5 has a lower frequency than the data 
(0.5 kHz). This model demonstrates that the 
vertical velocity can be brought into the 
experimental range by additional physics. 
This model also introduces a phase shift 
between the density fluctuation amplitude 
and the ExB velocity shear as shown in 
figure 6. Comparing figure 6 to reference 
[2] figure 3(a,b) it is clear that the density 
fluctuation amplitude is rising at the time of maximum ExB velocity shear so the counter 
clockwise rotation of this LCO cycle agrees with the direction measured at this location. 
It can be shown in general, for the spectral shift model, that if the linear growth rate γ  is 

Fig. 4. Critical value of the diamagnetic 
velocity to trigger and LCO phase (dashed) or 
an L/H transition (solid) vs line average density 
scaled from reference data point (grey stars). 

Fig. 5. Time history of the ExB velocity (a) 
relative density fluctuation amplitude (b) and 
vertical velocity (c) for the LCO case with KH 
drive. 
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rising at the peak in the magnitude of the 
ExB shear, there is a counter clockwise orbit, 
but if the linear growth rate is falling at the 
peak in the ExB shear magnitude, the orbit 
is clockwise. A reduction of the linear 
growth rate could occur due to a greater 
steepening of the density gradient than the 
temperature gradient causing a reduction in the ion temperature gradient mode growthrate. 
Both directions of the phase orbit are observed in experiments [16]. 

A one-step L/H transition occurs in the model with KH drive for a smaller gradient 
scale length 

€ 

Δ r = 0.0154 m( ) as shown in figure 7. The density fluctuations [figure 7(a)] 
drop within 0.1 ms and the ExB (black) and vertical (grey) velocities [figure 7(b)] re-
arrange within 0.5 ms at the transition. These are the same timescales that have been 
observed for the “trigger” event at the start of the L/H transition [6]. This fast change in 
velocity has been called a trigger because it precedes the slower change in the 
diamagnetic velocity. This is also the case in figure 7(b) since the diamagnetic velocity 
(dashed) is being ramped at a slow rate.  

Fig. 6. Relative density fluctuation amplitude 
vs 

€ 

γExB  for the LCO orbit from 202-205 ms in 
figure 5. 

Fig. 7. L/H transition relative density 
fluctuation amplitude (a) and ExB (black), 
vertical (grey) and minus the diamagnetic 
(dashed) velocities (b) vs time (ms). 
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4.  Origin of the Momentum Transport LCO 

The origin of the LCO type transition can be understood by examination of the 
acceleration of the parallel and ExB velocities. The local momentum transport equations 
[equations (10) and (11)] can be re-written in the following way by diagonalizing the 
time derivatives and re-grouping terms. 

aper
∂ûExB
∂t

=A11ûExB +A12ûpar + sExB
ext    , (12a) 

∂ûpar
∂t

=A22ûpar +A21ûExB + spar
ext    , (12b) 

The acceleration matrix has the elements: 

A11 = −Φ1
2 dparβpar −dtorβtor

Δr
2 − aper

dneo
Δr
2 − νpol    ,      A22 = −Φ1

2 dpar
Δr
2 −

dneo
Δr
2 − νpol    , (13a) 

A12 =Φ1
2 dpar −dtor

Δr
2 + νpol    ,        A21 =Φ1

2 βpardpar
Δr
2 + νpol    . (13b) 

And the external sources including the diamagnetic velocity terms are collected into  

sExB
ext = Ŝtor − Ŝpar − aper

∂
∂t
+
dneo
Δr
2

$

%
&

'

(
)+ νpol 1+ cneo( )

+

,
-

.

/
0ûdia    , (14a) 

spar
ext = Ŝpar + νpol 1+ cneo( ) ûdia    . (14b) 

When the intensity slope is positive Φ1
2 > 0  the acceleration matrix has negative diagonal 

terms and causes a de-acceleration (decay) of the velocities.  For sufficient ExB velocity 
shear, the intensity slope is negative Φ1

2 < 0  (figure 1). Assuming both diagonal elements 
become positive for some value of the ExB velocity shear, the parallel velocity will have 
a larger diagonal acceleration (

€ 

A22) than the ExB velocity (

€ 

A11) since the parallel 
momentum diffusion is larger than the ExB effective diffusion:  dpar > dparβpar −βtordtor . 
There will also be a range of ExB velocity shear where only the parallel diagonal element 

€ 

A22  has changed sign causing a growth in parallel velocity and an increase in the 
turbulence. The off diagonal elements play a critical role in the LCO. If the off-diagonal 
element in the ExB velocity equation 

€ 

A12 is positive, then when the parallel velocity has 
the opposite sign of the ExB velocity, the off-diagonal term causes a de-acceleration of 
the ExB velocity. The evolution of the parallel and ExB velocities are plotted in figure 8 
for a single LCO cycle (a) and for a single step L/H transition (b) over a 3 ms time frame. 
Both cases start with a rapid growth of the velocities. The difference between the LCO 
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and L/H cases is that for the L/H cases the 
ExB velocity reaches a larger amplitude and 
the parallel velocity decays due to the 
elimination of the turbulence drive. For the 
LCO, the parallel velocity continues to grow 
in amplitude until it becomes large enough to 
cause a decay of the ExB velocity and a 
return to the high turbulence L-mode state. 
The off-diagonal coupling between velocities 
is responsible for this. The strong rise in 
parallel velocity at the end of each LCO cycle 
has a short duration that makes it difficult to 
measure with CER but is a signature feature 
of the LCO predicted by this model. If the 
parallel and ExB velocities could be made to 
have the same sign, then the LCO would not 
occur because the off-diagonal coupling 
would enhance rather than retard the growth of the ExB velocity resulting in an L/H 
transition. 

Fig. 8. Parallel velocity 

€ 

u par  (positive), ExB 
velocity 

€ 

uExB  (negative) for a single LCO 
cycle (a) and for a single step L/H transition 
(b) over a 3 ms time window. 
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5.  Summary 

In this paper it has been shown that the mean field parallel and toroidal momentum 
equations can have both one-step transitions to suppressed turbulence (L/H) and limit 
cycle oscillations of the parallel and ExB velocities. Using data from a DIII-D L-mode 
discharge, it was shown that a simplified model, with the turbulent momentum transport 
constrained by the power balance diffusivities and the computed neoclassical poloidal 
damping rate, can fit the LCO frequency, the ExB velocity and the density fluctuation 
amplitude waveforms in reasonable agreement with the measurements. It was further 
shown that the frequency scales linearly with the neoclassical poloidal damping rate and 
that the density dependence of the L/H power threshold is well represented by the model. 
The counter clockwise phase shift between the density fluctuations and the ExB velocity 
shear observed in the data is explained by the model as being due to the parallel velocity 
shear drive of the linear growth rate. The LCO of the momentum equations occurs 
because there is a weaker growth of the ExB velocity shear than the parallel velocity 
shear amplitudes. For a high poloidal velocity damping rate, the ExB velocity shear 
cannot make a full transition to suppressed turbulence and the parallel velocity shear 
growth de-accelerates the ExB velocity forcing a return to L-mode at the end of the LCO 
cycle. For weaker poloidal velocity damping, the ExB shear can complete the transition 
to H mode before the parallel flow grows to a critical level for the LCO. The goal of this 
work was to establish that the mean field momentum equations can fit the measurements. 
The next goal is to show that a calibrated quasilinear model of the turbulence, like TGLF 
[26], can predict the L/H transition and LCO properties without adjustable parameters. 
There are still many obstacles along the path to a realistic theoretical prediction of the 
L/H transition including all of the transport channels. This paper has taken the step of 
verifying that the mean field momentum transport equations capture the non-linear 
dynamics between the turbulence and the evolution of the mean velocities well enough to 
reproduce the observed phenomenology of LCO and L/H transitions. 
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