INSIGHTS INTO m/n=2/1 TEARING MODE STABILITY BASED ON INITIAL ISLAND GROWTH RATE IN DIII-D ITER BASELINE SCENARIO DISCHARGES

by

R.J. LA HAYE, G.L. JACKSON, T.C. LUCE, K.E.J. OLOFSSON, W.M. SOLOMON, and F. TURCO

JULY 2014
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
INSIGHTS INTO m/n=2/1 TEARING MODE STABILITY
BASED ON INITIAL ISLAND GROWTH RATE IN DIII-D
ITER BASELINE SCENARIO DISCHARGES

by
R.J. LA HAYE, G.L. JACKSON, T.C. LUCE, K.E.J. OLOFSSON,* W.M. SOLOMON,†
and F. TURCO*

This is a preprint of a paper to be presented at the Forty-First European
Physical Society Conf. on Plasma Physics, June 23–27, 2014 in Berlin,
Germany and to be published in the Proceedings.

*Columbia University, New York, New York, USA.
†Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA.

Work supported by
the U.S. Department of Energy under
DE-FC02-04ER54698, DE-SC0008520, DE-AC02-09CH11466,
and DE-FG02-04ER54761

GENERAL ATOMICS PROJECT 30200
JULY 2014
1. Introduction

Deleterious m/n=2/1 tearing modes appear in some slowly evolving (internal inductance \(l_i \) decreasing, \(\beta \) nearly constant) ITER baseline scenario DIII-D discharges \[1,2\]. These modes tend to lock to the resistive wall, cause loss of high confinement H-mode and produce a disruption. Understanding the nature of the destabilization is important for both extrapolating to ITER and for learning what must be done to avoid or stabilize them. The destabilization is here interpreted as due to an initially positive (destabilizing) classical tearing index balanced only in part by curvature and the small island stabilization effects of neoclassical tearing modes. As in a true neoclassical tearing mode (NTM) with negative stabilizing classical tearing index, the instability must be seeded by something else. By evaluating the mode growth rate at the onset, the classical tearing stability index \(\Delta' \) is appraised before the island grows to large size and the plasma equilibrium has time to change.

2. DIII-D ITER Baseline Scenario Discharges

Examples of m/n=2/1 tearing occurring after at least 3 seconds into discharges (ELMing H-mode at 2 seconds, global resistive diffusion time \(\tau_R \approx 1 \) s) are analyzed with “seeding” by either sawteeth or edge localized modes (ELMs). Discharges are taken from the 2013 campaign with: 1) no electron cyclotron current drive (ECCD), 2) no off-axis neutral beam injection (NBI), 3) no gas-puffing which would modify the edge current density and 4) no impurity injection (which would modify the current profile and thus stability). These criteria allow for natural relaxation of the current and safety factor (q) profiles. Torque is however varied within this set and the resulting initial 2/1 tearing frequency varies as shown in Fig. 1. The mean \(q_{95}=3.28\pm0.10, \beta_N=1.90\pm0.12 \) and \(l_i=0.90\pm0.03 \). Island width evolution is evaluated by the Mirnov magnetic probe arrays using the motional Stark effect EFIT equilibrium reconstructions and calibrated by the electron cyclotron emission (ECE) diagnostic. The magnetics analysis code EIGSPEC \[3\] uses so-called subspace methods (instead of FFT methods) to estimate peaks in the array magnetics power spectrum to discriminate multiple modes and determine the precise point at which the m/n=2/1 mode begins to grow. An
example of EIGSPEC for a sawtooth $m/n=1/1$ mode seeding the 2/1 mode (in presence of a previously “saturated” 3/2 mode) is shown in Fig. 2.

3. Δ' and the Growth Rate of a Tearing Mode

Absent the curvature and neoclassical effects, an initially “small” island unstable tearing mode will grow linearly with time in proportion to Δ' and the plasma resistivity [4], Eq. (1a). If neoclassically perturbed bootstrap current effects at small island size are included and dominate the $\Delta' r$ term, the tearing mode will initially grow exponentially [4], Eq. (1b). Both behaviors are observed as seen in Fig. 3.

$$(a) \quad \frac{dw}{dt} = \frac{\eta}{\mu_0} \Delta' \left(1 - \frac{w}{w_{sat}} \right)$$

If $\Delta'>0$, and $w<<w_{sat}$ initially

$w = w_0 + (\eta \Delta' / \mu_0) \delta t$

$$\frac{dw}{dt} = \frac{\eta}{\mu_0} \left(\Delta' + \frac{w_{nc} w}{w^2 + \omega_d^2} \right)$$

If $|\Delta'|<<w_{nc} w/\omega_d^2$ and $w^2<<\omega_d^2$ initially

$w = w_0 \exp[\eta / \mu_0 (w_{nc} / \omega_d^2) \delta t]$

The full Modified Rutherford Equation (MRE) used in Eq. (2a) is taken from Ref. [5] with a local $q=2$ resistive time that includes both Sauter electron trapping corrections to Spitzer resistivity and the measured Z_{eff}. The mean $\tau_R=1.9\pm0.6$ s with mean trapping correction $\epsilon=0.27\pm0.01$ and $Z_{eff}=2.4\pm0.3$. In Eq. (2a), the second term is the stabilizing effect of good average magnetic field curvature (“GGJ” after Glasser, Green, and Johnson), and the third term is the destabilizing helically perturbed bootstrap current effect (empirically obviated at very small islands with a form suggested by the “ion polarization current” effect). Results in Ref. [5] and references therein explain how each term was arrived at based on experiments. In particular, the effective parameter ω_{small} measured at $q_{95}=4$ and 7 scales to about 3 times the ion banana width at ITER $q_{95}=3.2$ (to be discussed).

$1.22^{-1} \frac{\tau_R}{r} \frac{dw}{dt} = \Delta' + (q^2 - 1) \frac{L_q^2 \beta_p}{L_p w} + \epsilon^{1/2} \frac{r L_q}{L_{pe}} \beta_{0e} \left(\frac{1}{w} - \frac{w_{small}^2}{3w^2} \right)$

$$\tau_R = \mu_0 r^2 / \eta , \quad \eta^{-1} = 1258 \gamma^3 / (eV) f(\epsilon) / Z_{eff}$$

$\Delta' r$ for classical stability (where r is the minor radius) is determined from Eq. (2a) by taking the helically perturbed bootstrap components (including both curvature and small island effects) and subtracting from the initial normalized island growth rate. The fitted form

Fig. 2. Mirnov magnetics modal array analysis to determine precise time when the 2/1 mode starts to grow. Blue is 1/1, red is 2/1 and green is 3/2.

Fig. 3. (a) An $m/n=2/1$ tearing mode “seeded” by a sawtooth crash initially grows linearly with time. (b) $m/n=2/1$ tearing mode “seeded” by an ELM, initially grows exponentially, then linearly with time. In general, larger initial island sizes from either a sawtooth crash or an ELM start in the linear phase.

Insights into $m/n=2/1$ Tearing Mode Stability Based on Initial Island Growth Rate in DIII-D ITER Baseline Scenario Discharges

R.J. La Haye, et al.

General Atomics Report GA-A27848 2
is Eq. (3) based on Eq. (2). The data are well described (using the MRE fitted in Fig. 4) by
the imbalance of the sum of the destabilizing classical tearing and the helically perturbed
bootstrap current terms with the sum of the stabilizing curvature and “ion polarization”
effects. In particular $\Delta' r=1.1\pm0.3$ is destabilizing. The other fitted parameters are
$a_{bs}=0.48\pm0.25$, $a_{GGJ}/a_{bs}=0.35\pm0.38$ and $w_{small}/w_{ib}=3.0\pm0.4$. The fitted parameters correspond
well to values from measured profiles [using Eq. (2) for 154986 for example of Fig. 3(a)
$a_{bs}/(w/3w_{ib})=0.45$ and $a_{GGJ}/(w/3w_{ib})=0.15$].

$$1.22^{-1} \frac{\tau_R}{r} \frac{dw}{dt} = \Delta r + \frac{(a_{bs} - a_{GGJ})}{w/3w_{ib}} - \frac{a_{bs}(w_{small}/3w_{ib})^2}{3(w/3w_{ib})^3}$$

(3)

The islands have slower beginning growth rates at smaller initial island size (w_{init}). ($\tau_R/1.22)dw/dt$ is found to
be just >0 for initial island width $w_{init}\sim 1.5w_{ib}$ (where again w_{ib} is the ion banana width) and to be ~1 for $w_{init}\sim 3w_{ib}$.
The form of the early evolution of $w(t)$ tends to be an exponential if the island is small [Fig. 3(b)] and linear
[Fig. 3(a)] if large. The fit to Eq. (3) is in accord with the
different initial time variation functional forms of the
island growth as shown in Fig. 4. For small w_{init} (in red), the initial dw/dt is linear in w which produces an
exponential $w(t)$ at first. For larger w_{init} (in green), the
initial dw/dt is independent of w which produces a constant dw/dt at first.

At very small island widths (w goes to zero) where
neoclassical effects are gone ($w^2<<w_{ib}^2$) and the curvature
effect is no longer $\sim w^{-1}$ ($w^2<<\rho_i^2$ with ρ_i the ion
gyroradius), the stability with positive $\Delta' r$ is maintained
by the finite curvature. This is shown in Fig. 5. Including
these effects does not affect the fits to data. Despite a
destabilizing positive $\Delta' r$, the neoclassical and curvature effects make the 2/1 tearing mode
destabilization appear as an NTM which needs seeding. (Although one case may be seedless
as occurs with a delay after an ELM.)

4. Effect of Updated Assumptions for ITER Modeling of ECCD 2/1 NTM Stabilization

ITER relies upon well-aligned localized electron cyclotron current drive (ECCD) at $q=2$
to stabilize or suppress (limit to small amplitude transients) $m/n=2/1$ neoclassical tearing
modes [7]. The effectiveness and power requirements of ECCD in ITER were previously
predicated on an “educated guess” of the classical stability index ($\Delta' r \approx -m$). At first thought,
the DIII-D results suggest that there will be classical instability ($\Delta' r >0$) in ITER and thus
more ECCD power needed for stabilization than previously estimated. However, it is found
that also including the curvature stabilization, and in particular, the increased small island
stabilization (w_{small}/w_{ib} was 2 and is updated as 3, the difference being more than the ±0.4
uncertainty of the data fit) makes the necessary power slightly lower as shown in Fig. 6. The
increased marginal island width also makes the match of the ITER front-launched ECCD width better.

5. Conclusions

DIII-D ITER baseline scenario discharges tend to evolve to where “seeding” by sawteeth or ELMs destabilize deleterious $m/n=2/1$ tearing modes. This is interpreted as due to a classically unstable tearing index at initial island growth; but with the behavior of a neoclassical tearing mode. Stabilizing curvature and small island effects balance destabilizing $\Delta'r$ and the helically perturbed bootstrap current unless seeds are large enough. The consequences found of similar $\Delta'r$ in ITER are minimal on required EC power when all effects are updated from Ref. [7]. Furthermore, stabilization of sawteeth by ECCD [8] and of ELMs [9] in ITER would reduce seeding and be of help.

This work was supported by the US Department of Energy under DE-FC02-04ER54698, DE-SC0008520, DE-AC02-09CH11466, and DE-FG02-04ER54761.