DESIGN PARAMETERS FOR DIII-D STEADY-STATE SCENARIO DISCHARGES

by

J.R. FERRON, C.T. HOLCOMB, T.C. LUCE, J.M. PARK, P.A. POLITZER, F. TURCO, J.C. DeBOO, E.J. DOYLE, A.W. HYATT, Y. IN, R.J. LA HAYE, M. MURAKAMI, M. OKABAYASHI, T.W. PETRIE, C.C. PETTY, H. REIMERDES, T.L. RHODES, A.E. WHITE, and L. ZENG

JULY 2011

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DESIGN PARAMETERS FOR DIII-D STEADY-STATE SCENARIO DISCHARGES

by

J.R. FERRON, C.T. HOLCOMB,* T.C. LUCE, J.M. PARK,[†] P.A. POLITZER, F. TURCO,[‡] J.C. DeBOO, E.J. DOYLE,[¶] A.W. HYATT, Y. IN,[§] R.J. LA HAYE, M. MURAKAMI,[†] M. OKABAYASHI,[#] T.W. PETRIE, C.C. PETTY, H. REIMERDES,^{∞} T.L. RHODES,[¶] A.E. WHITE,^{Δ} and L. ZENG[¶]

> This is a preprint of a paper to be presented at the 38th EPS Conf. on Plasma Physics, Strasbourg, France, June 27 through July 1, 2011 and to be published in the *Proceedings*.

*Lawrence Livermore National Laboratory, Livermore, California.
[†]Oak Ridge National Laboratory, Oak Ridge, Tennessee.
[‡]Oak Ridge Institute for Science Education, Oak Ridge, Tennessee.
[¶]University of California-Los Angeles, Los Angeles, California.
[§]FAR-TECH, Inc., San Diego, California.
[#]Princeton Plasma Physics Laboratory, Princeton, New Jersey.
[∞]CRPP-EPFL, Lausanne, Switzerland.
[△]Massachusetts Institute of Technology, Cambridge, Massachusetts.

Work supported in part by the U.S. Department of Energy under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC05-00OR22725, and DE-AC05-06OR23100, DE-FG02-08ER54984, DE-FG02-06ER84442, DE-AC02-09CH11466, and DE-FC02-99ER54512

> GENERAL ATOMICS PROJECT 30200 JULY 2011

Design Parameters for DIII-D Steady-State Scenario Discharges

<u>J.R. Ferron</u>¹, C.T. Holcomb², T.C. Luce¹, J.M. Park³, P.A. Politzer¹, F. Turco⁴, J.C. DeBoo¹, E.J. Doyle⁵, A.W. Hyatt¹, Y. In⁶, R.J. La Haye¹, M. Murakami³, M. Okabayashi⁷, T.W. Petrie¹, C.C. Petty¹, H. Reimerdes⁸, T.L. Rhodes⁵, A.E. White⁹, and L. Zeng⁵

¹General Atomics, PO Box 85608, San Diego, California 92186-5608, USA
²Lawrence Livermore National Laboratory, Livermore, California 94550, USA
³Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
⁴Oak Ridge Associated Universities, Oak Ridge, Tennessee 37831, USA
⁵University of California-Los Angeles, Los Angeles, California 90095, USA
⁶FAR-TECH, Inc., 3550 General Atomics Ct, San Diego, California 92121, USA
⁷Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 USA
⁸CRPP-EPFL, CH-1015 Lausanne, Switzerland
⁹Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

In recent DIII-D experiments [1-3], we have systematically studied the physics that affects the choice of parameters for a discharge where the goal is 100% noninductively driven current ($f_{\rm NI}$ =1) at high plasma pressure ($\beta_N \ge 4$). The choice of parameters will be a compromise that results in sufficiently high values of the bootstrap current fraction $f_{\rm BS}$, the efficiency of the externally driven current, and the fusion gain parameter $G = \beta_N H/q_{95}^2$ [4]. The available adjustable parameters are the q profile, the toroidal field $B_{\rm T}$, and the plasma density n. The tokamak geometry and the discharge shape are constrained by the existing DIII-D design. β_N will be close to the stability limit, which must be high enough to give access to the required $f_{\rm BS}$ and G. The input power is that required for external current drive at $f_{\rm NI}$ =1 and it must match the power required to maintain the pressure against transport losses [4].

To assess the effect of the q profile [2], the self consistent response of the temperature (T) and density profiles was measured in two sets of discharges with q_{\min} and q_{95} varied independently (q_{95} is the value of q near the discharge boundary and q_{\min} is the minimum value), one set at $\beta_N \approx 2.8$ and one set with the maximum available neutral beam power injected ($\beta_N \approx 3.5$ in most cases). The focus was on weak shear discharges without large, local pressure gradients that would reduce the stable β_N . The effects on stability and transport of more detailed features of the q profile such as the profile of the magnetic shear and the radial location where $q=q_{\min}$, also important for the choice of steady-state scenario parameters, will be considered in future work. Changes in the measured n and T profiles resulted in a systematic broadening of the pressure profile as either q_{\min} or β_N was increased. At the maximum β_N , the peaking factor for the thermal pressure f_p is roughly independent of q_{\min} and q_{95} .

The calculated f_{BS} for the experimental data is maximum at the largest value of q_{95} and the largest values of β_N (Fig. 1), with variation of f_{BS} with q_{core} comparable to the variation with

General Atomics Report GA–A27086 1

 q_{95} . At $\beta_N \approx 2.8$, the trend is for f_{BS} to increase with q_{core} except at $q_{core} \approx 2$ where the relatively high q_{core} is offset by reduced T and n gradients. At the maximum beam power, f_{BS} increases with q_{core} at the lowest q_{95} values, but at $q_{95}=6.8$ the scaling is the opposite because at the lowest q_{core} , β_N was relatively high (3.8) and at the highest q_{core} , β_N was relatively low (3.1). The neutral beam current drive fraction [2] was highest in the relatively low n discharges at the highest q_{core} , so that the calculated f_{NI} , in most cases, also increases with both q_{core} and q_{95} (Fig. 2).

At the highest values of β_N the reduced f_p results in J_{BS} profiles which are relatively uniform in the region inside the H-mode pedestal (Fig. 3). This J_{BS} profile shape is not a good match to the peaked profile of current density J in weak shear discharges. In addition, J_{BS} is only a small fraction of J in the inner portion of the discharge. Therefore, to achieve $f_{NI}=1$, the profile of the externally driven noninductive current that results in a match between the total noninductive current density J_{NI} and J will need to be peaked on axis.

The scan of the q profile indicates that $f_{NI}=1$ with $f_{\rm BS}$ >0.5 is presently best achieved in DIII-D at q_{95} >6. The preferable q_{\min} value is relatively high (e.g. >2) to minimize the external current drive requirement near the axis by reducing J and increasing J_{BS} in that region, but β_N must be increased above the value observed at the highest q_{core} value in this experiment. An excess of externally-driven current density near the axis which reduces q_{\min} , as in the case in Fig. 3, must be avoided. This is possible through injection of a substantial fraction of the neutral beam power off-axis, consistent with the case in Fig. 3 where ≈ 20 A cm⁻² additional $J_{\rm NI}$ is required in the region 0.2< ρ <0.7 at q_{95} >6 in order to reach $f_{NI}=1$. The capability to inject 5 MW off-axis has been made available for 2011 DIII-D experiments. Modeling of a discharge with 5 MW on-axis beam injection, 5 MW off-axis injection, and 3.5 MW off-axis

Fig. 1. Calculated bootstrap current fraction. $\beta_{\rm N}$ =2.8 (open), maximum beam power (closed), q_{95} : 4.5 (triangles), 5.6 (squares), 6.8 (circles). $q_{\rm core}$ is the average value of q in the region 0.0 < normalized radius ρ <0.3.

Fig. 2. Noninductive current fraction. Symbols are as in Fig. 1.

Fig. 3. Current density profiles in a discharge with the maximum neutral beam power, q_{95} =6.8, q_{core} =1.77. The total is from an equilibrium reconstruction, bootstrap (BS), electron-cyclotron (EC), neutral beam (NB) and total noninductive (NI) are calculated. The red curve is bootstrap at $\beta_N \approx 2.8$.

ECCD predicts $q_{\min}=2$ with a fully penetrated electric field.

In order to satisfy the requirements on the figure of merit G in the steady-state scenario of ITER or in a reactor, $q_{95}\approx5$ is thought to be necessary. The small value of $f_{BS}\approx0.4$ observed in this experiment at $q_{95}\approx5$, though, is not sufficient for practical steady-state operation. As q_{95} is reduced with fixed q_{min} , the additional current density is located off axis. The primary path to increased f_{BS} with J_{BS} added off-axis is broadening of the pressure profile to allow stable operation at increased β_N . Broadening of the pressure profile increases n and T gradients off-axis, and thus J_{BS} there, and results in higher stability limits. For MHD stability, the peaking factor for the fast ion pressure must be comparable to f_p so that the total pressure peaking factor is low. This will be facilitated by off-axis neutral beam injection in DIII-D. Previous

estimates have found ideal-wall stability at β_N =4 with total pressure peaking factor less than 2.6 [5].

At fixed β_N and q_{95} , the toroidal field strength (B_T) is the parameter to adjust to obtain a balance between the required current drive (P_{CD}) and heating powers when all external power sources provide both heating and current drive [3]. In cases like DIII-D where there is no α heating, the fraction of $I_{\rm p}$ driven by external current sources f_{CD} would be expected to increase with B_{T} as a result of the scaling of energy confinement with input power. Assuming H_{sop} confinement scaling, $P_{CD} \propto B_T^{1.9}$ at constant β_N and q_{95} , and for current drive efficiency of the form [4] $nI_{\rm CD}/(P_{\rm CD}T_{\rm e})$, then $f_{\rm CD}=C_{\rm CD}P_{\rm CD}$ β_N $q_{95}^2/(B_{\rm T} f_{\rm G}^2) \propto B_{\rm T}^{0.9}$ (where $f_{\rm G}$ is the Greenwald density fraction and C_{CD} is a constant). If *n* is maintained at a low level through pumping of divertor exhaust so that $f_{\rm G}$ decreases as $B_{\rm T}$ is increased, the driven current increases faster than linearly with $P_{\rm CD}$ because of increases in $T_{\rm e}$.

Fig. 4. As a function of the toroidal field strength (a) neutral beam power at constant β_N , (b) total neutral-beamdriven current. The dashed lines show the trend that would be expected from scaling which is linear in B_T . Anomalous fast ion diffusion: none (red), 1-2 m²/s (black).

This type of scaling was demonstrated in DIII-D in a series of neutral-beam-heated discharges [3] with q_{95} =6.2 and $\beta_N \approx 3.4$ (Fig. 4). A factor 1.2 change in B_T required a factor 1.4 increase in the neutral beam power, resulting in a factor 1.6-1.8 increase in the total neutral beam driven current. Because B_T/I_p was held constant during the scan, f_{NBCD} and f_{NI} also increased.

In DIII-D steady-state scenario experiments, the minimum achievable *n* is used in order to maximize f_{CD} . To minimize *n*, the plasma shape is chosen to optimize the use of the divertor cryopump capability [1]. Typically H_{98} =1.5 as long as *n* is above approximately 4.5x10¹⁹ m⁻³, but as *n* decreases during the high β_N phase of a discharge as the wall particle source is

General Atomics Report GA–A27086 3

depleted, a trend toward decreasing $\tau_{\rm E}$ is observed (Fig. 5). This places constraints on the ability to reduce *n* in order to maximize the total externally driven current. No reproducible quantitative relation between *n* and H_{98} has been found as yet, but for *n* near 4.0x10¹⁹ m⁻³, H_{98} typically is about 1.1.

A set of self-consistent parameters for $f_{\rm NI}$ =1 operation in DIII-D can be determined by combining the observed scalings of $f_{\rm BS}$ and $f_{\rm CD}$. A fit to the data from the q profile scaling experiment yields $C_{\rm CD} = 1.03 \times 10^{-4}$ and $f_{\rm BS}$ scales with β_N , $q_{\rm core}$, q_{95} and $f_{\rm p}$ as shown in [2]. In the example in Fig. 6, the circles highlight $f_{\rm NI}$ =1 solutions at two values of q_{95} .

Fig. 5. For several discharges, in the approximately constant $\beta_N > 3$ phase, energy confinement time as a function of density.

At $q_{95}\approx6.2$, $f_{\rm NI}=1$ at $\beta_N=3.8$ (similar to the discharge discussed in [1]). For the heating and current drive powers to be balanced, the required confinement enhancement factor H_{89} , 2.1 in this case, must match the value in the discharge. At $q_{95}\approx5$, the $f_{\rm NI}=1$ solution is at higher $\beta_N=4.1$, requiring a larger $H_{89}=2.3$. To adjust the power balance, $B_{\rm T}$ can be changed. For instance, for the parameters of Fig. 6 but at higher $B_{\rm T}=2.0$ T, the $f_{\rm NI}=1$ solution at $q_{95}\approx6.2$ is

at lower β_N =3.6 but higher H_{89} =2.2, and at $q_{95}\approx5$ the solution moves to β_N =3.85, H_{89} =2.5. In all cases, MHD stability must be sufficient to reach the required β_N .

Work supported in part by the U.S. Department of Energy under DE-FC02-04ER554698, DE-AC52-07NA27344, DE-AC05-06OR23100, DE-FG02-08ER54984, DE-FG02-06ER84442, DE-AC05-00OR22725,

Fig. 6. Contours of self-consistent discharge parameters derived from $f_{\rm BS}$ and $f_{\rm CD}$ scalings and $f_{\rm NI}=f_{\rm BS}+f_{\rm CD}$ with $B_{\rm T}=1.75$ T, $q_{\rm core}=2$, $n=4.5\times10^{19}$ m⁻³, $f_{\rm p}=2.5$, $P_{\rm CD}=16$ MW, and fast ion stored energy fraction = 0.25. The circles highlight $f_{\rm NI}=1$ solutions at two values of q_{95} .

DE-AC02-09CH11466 and DE-FC02-99ER54512.

- [1] C.T. Holcomb et al., 2009 Phys. Plasmas 16 056116
- [2] J.R. Ferron *et al.*, 2011 Nucl. Fusion **51** 063026
- [3] J.R. Ferron *et al.*, 2011 "Balancing Current Drive and Heating in DIII-D High Noninductive Current Fraction Discharges," submitted to Nucl. Fusion (2011).
- [4] C. Gormezano et al., 2007 Nucl. Fusion 47 S285
- [5] J.R. Ferron et al., 2005 Phys. Plasmas 12 056126
- 4 General Atomics Report GA–A27086