Particle Exhaust During RMP ELM Suppression on DIII-D with an Open and Closed Divertor*

<u>E.A. Unterberg</u>¹, T.E. Evans², R. Maingi³, O. Schmitz⁴, N.H. Brooks², M.E. Fenstermacher⁵, R.A. Moyer⁶, D.M. Orlov⁶, and S. Mordijck⁶

¹Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
²General Atomics, PO Box 85608, San Diego, California 92186-5608, USA
³Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
⁴Forschungszentrum Jülich, Jülich, Germany
⁵Lawrence Livermore National Laboratory, Livermore, California, USA
⁶University of California-San Diego, La Jolla, California, USA

A common feature in many edge stochastic experiments is a reduction of plasma density ("pumpout"). During the application of resonant magnetic perturbations (RMPs) in most DIII-D plasmas, pumpout precedes the suppression of ELMs. The magnitude of the pumpout of electrons has a ~30% variation for discharges with similar applied RMP field strength and q_{95} . This large variation in pumpout magnitude motivated a more detailed study of plasma sources and sinks during RMP experiments on DIII-D. Recent analysis using a global particle balance and measurements of the D_{α} poloidal distribution show that the wall inventory can be strongly affected by changing the average triangularity ($\langle \delta \rangle$) of the plasma (primarily due to changes in δ_{low}). Lower single null (LSN) discharges with similar plasma characteristics (e.g. n_e and electron collisionality) with different $\langle \delta \rangle$ were realized in DIII-D with a significant modification to the lower divertor baffling structure during a vessel upgrade in 2005. In particular, the analysis shows that at $\langle \delta \rangle \sim 0.3$ the integrated plasma efflux during the RMP is greater than the total number of particles removed by the cryopump system, indicating active wall pumping. Conversely, at $\langle \delta \rangle \sim 0.5$ in a scaled ITER-like shape, the plasma efflux during the RMP is balanced by the cryopump exhaust, i.e., no wall pumping is inferred. Additionally, the D_{α} intensity in the $\langle \delta \rangle \sim 0.5$ discharges increased by $\sim 50\%$ -100% when compared to $\langle \delta \rangle = 0.3$ discharges. The observations at $\langle \delta \rangle \sim 0.5$ imply an increase in the scrape-off layer neutral density. This overall result is significant, because it demonstrates density pumpout and ELM suppression without significant wall pumping, a feature that is essential in long-pulse reactors with saturated walls.

^{*}Work supported by the US Department of Energy under DE-AC05-06OR23100, DE-FC02-04ER54698, DE-AC05-00OR22725, DE-AC52-07NA27344, DE-FG02-07ER54917.